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Agonistic behaviour is an important component of intraspecific competition because outcomes of
agonistic contests can serve as indicators of fitness, helping the victors secure critical resources. Although
several factors affecting aggression, including age and body size, have been well documented, few studies
have examined the effects of abiotic factors on aggression and outcomes of agonistic contests. Abiotic
factors affect a broad range of behaviours and can naturally covary, but some factors are becoming
increasingly uncoupled. For example, ongoing climate change continues to shift temperature, but not
light:dark, cycles. Thus, we employed a 2 � 2 factorial design in sand field crickets, Gryllus firmus, to
disentangle the naturally covarying effects of temperature and circadian rhythms. During early adult-
hood, virgin males were maintained in either a typical or inverted diel temperature cycle (i.e. cool in the
morning and warm in the afternoon, or warm in the morning and cool in the afternoon, respectively)
reflecting field conditions (20.5e32 �C). Agonistic contests occurred at either cool (22 �C) or warm (31 �C)
periods in the temperature cycle. Morphological traits, such as head width, femur length and testes mass,
positively covaried and influenced the outcome of contests where relatively large crickets won most
contests. However, temperature and time of day had additive, interactive effects on the level of
aggression and the duration of contests. Contests occurring in cool, morning conditions were relatively
long and aggressive. Although crickets appeared to use a mutual assessment strategy (contests between
males of mismatched body size took longer to initiate), there may have been a context-dependent shift to
a self-assessment strategy during warm evenings. Thus, plasticity in agonistic behaviour occurred due to
the interactive, additive effects of temperature and circadian dynamics. We encourage continued
investigation into studies that disentangle the effects of temperature and circadian effects on other
fitness-related behaviours, such as mate choice or foraging.
© 2018 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Agonistic behaviour is an important component of intraspecific
competition for many animals (Alexander, 1961; Choe & Crespi,
1997). Often, outcomes of agonistic contests serve as indicators of
individual fitness, helping the victors secure essential resources
(e.g. territory, food and/or mates: Huntingford, 2013; Zeng, Zhu, &
Kang, 2016). However, ‘winning’ an agonistic contest via aggressive
behaviour incurs metabolic and physiological costs, increased risks
of injury and predation, and loss of time available for other activ-
ities (Briffa & Sneddon, 2007). Thus, contestants may evaluate one
another's relative fighting abilities (resource-holding potential,
RHP) and motivation prior to aggressive escalation to minimize
these potential costs (Hofmann & Schildberger, 2001; Jenssen,
Decourcy, & Congdon, 2005; Maynard Smith & Parker, 1976).
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Morphological features (i.e. body size and specialized weap-
onry) of males strongly influence the outcomes of agonistic con-
tests within many species (DiMarco & Hanlon, 1997; Huyghe,
Vanhooydonck, Scheers, Molina-Borja, & Van Damme, 2005;
Jenssen et al., 2005; Murai & Blackwell, 2005; reviewed in ; Arnott
& Elwood, 2009). Intercontestant variation in RHP can mediate
agonistic contests via self-assessment where each contestant only
has information about its own RHP (e.g. when quickly initiated,
prolonged and/or aggressive contests are associated with larger
losers) (Arnott & Elwood, 2009; Prenter, Elwood, & Taylor, 2006).
Alternatively, morphological variation can be mutually assessed
where each contestant assesses its own RHP relative to that of its
opponent (e.g. when briefer and/or less aggressive contests are
associated with larger winners) (Arnott & Elwood, 2009; Prenter
et al., 2006). Across taxa, other factors also affect aggression, such
as variation in age (Humphries, Hebblethwaite, Batchelor, & Hardy,
2006), sex (Draud, Macias-Ordonez, Verga, & Itzkowiz, 2004; Elias,
Botero, Andrade, Mason, & Kasumovic, 2010), perceived resource
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value (Tobias, 1997) and agonistic experience (Hsu, Earley, & Wolf,
2006; Kasumovic, Elias, Sivalinghem, Mason, & Andrade, 2010;
Stevenson, Dyakonova, Rillich, & Schildberger, 2005). Yet, the role
of abiotic factors in behavioural aggression and contest dynamics is
less understood (Lane & Briffa, 2018) even though the abiotic
environment influences many common biological processes. For
example, temperature exhibits spatiotemporal variation and in-
fluences most physiological processes in many animals, including
locomotion (Huey & Berrigan, 2001) and standard metabolic rate
(Nespolo, Lardies, & Bozinovic, 2003). Moreover, ambient temper-
ature affects animal behaviours, including sexually selected be-
haviours in insects (Doherty, 1985; Martin, Gray, & Cade, 2000;
Pires & Hoy, 1992; Ritchie, Saarikettu, Livingstone, & Hoikkala,
2001), frogs (Gerhardt, 1978; Gerhardt & Doherty, 1988; Navas,
1996; Navas & Beveir, 2001) and lizards (Brattstrom, 1974). For
example, in male crickets, temperature influences song structure
(Martin et al., 2000), which contains information about the caller's
RHP and ability towin a fightd body size affects song structure and
predicts the winners of agonistic contests (Brown, Smith, Moskalik,
& Gabriel, 2006). Thus, temperature may be an important factor in
modulating the dynamics of agonistic contests (Stutt & Wilmer,
1998).

In the natural environment, daily temperature cycles typically
covary with the photophase: it is cooler early in the photophase
and warmer later in the photophase. Consequently, temperature
effects on animal behaviour and physiology are often closely
intertwined with light-driven effects. For example, the natural
coupling of temperature and light cycles produces covarying effects
on the circadian timing system, a nearly ubiquitous biological
system responsible for coordinating physiological processes and
daily rhythms of behaviour (Stanewsky, 2003; Van Someren, 2003).
While circadian clocks may exhibit both thermal sensitivity and
photosensitivity, the entrainment of the circadian clocks of many
animals is facilitated primarily through animals' visual systems
(Barlow, Chamberlain, & Lehman, 1989; Berson, Dunn, & Takao,
2002; Helfrich-F€orster, Stengl, & Homberg, 1998). Thus, the sensi-
tivity of temperature- and circadian-driven sensory systems may
affect males' abilities to efficiently evaluate the RHP of themselves
and/or their competitors. In addition, temperature and/or time-of-
day effects may limit the expression of RHP by each competitor. For
example, during a cool morning, a large male may not fully express
its high RHP but quickly win a contest with a smaller male given the
strong effect of temperature on muscle function and locomotor
capacity (reviewed in Bennett, 1985, 1990; James, 2013). In sum-
mary, temperature or time of day may influence the dynamics of
agonistic contests by influencing either the perception or the
expression of RHP.

Although difficult, it is important to disentangle the effects of
temperature and time of day on behavioural dynamics. Animal
behaviour influences population and community ecology, as well as
conservation biology (Sih, Bell, Johnson,& Ziemba, 2004), andmost
behaviours exhibit significant plasticity in response to environ-
mental or temporal factors (Bell, Hankison, & Laskowski, 2009).
Ongoing climate change continues to shift temperatures (IPCC,
2014), but not light:dark cycles, and this uncoupling leads to
global changes in phenology that often result in ecosystem
disruption (Burrows et al., 2011; Parmesan, 2006; Parmesan &
Yohe, 2003). To understand the relative importance of tempera-
ture and time of day in behavioural dynamics, careful independent
manipulation of the thermal and light environments is required.

Thus, we used such a factorial experimental approach in male
sand field crickets, Gryllus firmus, to evaluate and disentangle the
modulating potential of temperature and time of day. Gryllus
crickets offer a well-documented system of agonistic behaviour
exhibiting context dependency or plasticity (Adamo, Gomez-
Juliano, LeDue, Little, & Sullivan, 2015; Adamo & Hoy, 1995; Alex-
ander, 1961; Rillich, Schildberger, & Stevenson, 2007; Stevenson
et al., 2005), and other crickets (house cricket, Acheta domesticus)
have been shown to exhibit mutual assessment strategies related to
agonistic contests (Briffa, 2008; Hack, 1997a). We tested two hy-
potheses. First, morphological traits affect the outcome of
maleemale agonistic contests. Here, we predicted larger, heavier
males with larger mandibles (specialized weaponry for fighting:
Alexander, 1961) would be more likely to win contests relative to
smaller males. Second, contest dynamics depend on the interaction
of time of day and temperature. Here, we specifically predicted
additive effects of time of day and temperature where males'
assessment or expression of RHP would be relatively less precise
early in the day and at cooler temperatures. In the field, the early
photophase is associated with reduced movement by some Gryllus
cricket males (French & Cade, 1987) d thus, we predicted that
these conditions would result in less efficient contest strategies
and, therefore, lead to more aggressive or longer contests. By
experimentally uncoupling two inescapable and covarying factors,
this study aims to clarify the complexity of the effects of the natural
environment on the plasticity of a fitness-related behaviour.
Although our study focuses on agonistic behaviour, the experi-
mental approach we use can be similarly applied to other behav-
ioural dynamics, such as mating or foraging decisions.

METHODS

Study Animals

Gryllus firmus is an omnivorous field cricket native to the
southeastern United States (Capinera, Scott, & Walker, 2004).
Crickets used in the study had been raised in outbred populations
that were artificially selected to produce either long-winged
(typically, flight-capable) or flightless short-winged morphs for
several decades as previously described (Zera, 2005; Zera & Larsen,
2001). In particular, short-winged G. firmus from three selected
blocks were used in our study because the short-winged morph is
the more aggressive morph in other Gryllus crickets (Guerra &
Pollack, 2010). Crickets were reared in standard conditions
(16:8 h light:dark cycle and 28 ± 1 �C with ad libitum access to
water and commercial dry cat food) until adulthood. To ensure
virginity, male crickets were removed from group housing at
approx. 1 day postadult moult.

Crickets were then individually housed for 6 days prior to the
experiment to limit agonistic behaviour, which can influence sub-
sequent contest outcomes (Adamo & Hoy, 1995; Hofmann &
Stevenson, 2000). Isolated males were individually housed in
round, translucent plastic containers (0.5 litre; height: 7.5 cm;
meanwidth: 10 cm) with a small shelter, as well as ad libitum food
andwater. During this pre-experiment isolation period, males were
placed in an incubator (model I-36, Percival Scientific, Inc., Perry, IA,
U.S.A.) with a 16:8 h light:dark cycle at a diel temperature cycle
reflecting field conditions (20.5e32 �C, which is the average daily
temperature range in Gainesville, Florida, U.S.A. (locationwhere the
founders of the stock were collected) during the crickets' active
season (MayeSeptember): National Weather Service, Silver Spring,
MD, U.S.A.). Half of the crickets were randomly assigned to an
incubator mimicking a ‘typical’ diel temperature cycle d that is,
cooler in the morning (early in the photophase) and warmer in the
evening (later in the photophase). To disentangle thermal and
circadian effects, we randomly assigned the other half of the
crickets to an ‘inverted’ diel temperature cycled that is, warmer in
the morning and cooler in the evening. All crickets experienced
the same light:dark cycle (lights on from 0600 to 2200 hours)
throughout ontogeny and the duration of the experiment
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(described below). Isolated crickets received no tactile stimuli from
conspecifics, but they could potentially hear or smell other indi-
vidually housedmales within the incubator as they each acclimated
to one of two temperature treatments (i.e. typical versus inverted
diel temperature cycle). At 7 days of adulthood, virgin male crickets
were weighed and marked with nontoxic paint on the pronotum
for identification in preparation for agonistic trials (see below).
Field observations of behaviour in G. firmus is scant, but maleemale
agonistic behaviour in captivity is frequently observed throughout
the day and night in these blocks (Z. R. Stahlschmidt, personal
observation) and in other Gryllus crickets (Dixon & Cade, 1986).

Experimental Design

A 2 � 2 factorial design was implemented to determine the ef-
fects of temperature and time of day on agonistic behaviour in
G. firmus. Males (N ¼ 280) were randomly assigned to agonistic
trials occurring in either cool (21.7 �C) or warm (31.3 �C) conditions,
and either early or late into the photophase (6% (<1 h) into the
photophase versus 75% (12 h) into the photophase, respectively).
For example, a male acclimated to the typical temperature cycle
(see above) could only be assigned to a cool morning or a warm
evening trial whereas a male acclimated to the inverted tempera-
ture cycle could only be assigned to a warm morning or a cool
evening trial. After weighing andmarking at 5e7 days of adulthood
(see above), each cricket was paired with another male from the
same temperature treatment group (i.e. typical versus inverted diel
temperature cycle experienced during first 6 days of adulthood).
Results from a linear mixed model (block as a random effect)
indicated that the body mass of contestants was not influenced by
temperature treatment (F1,284 ¼ 0.15, P ¼ 0.70), time of day
(F1,284 ¼ 0.18, P ¼ 0.67) or a temperature)time interaction
(F1,284 ¼ 0.003, P ¼ 0.96).

Each cricket in a pair was placed on opposite ends of a rectan-
gular, translucent plastic arena (1.9 litre; height 10 cm; mean
width: 11.5 cm; mean length: 17.5 cm) filled with 3 cm of sand.
Each cricket pair was separated by a removable opaque plastic
barrier that limited tactile and visual cues between opponents prior
to the initiation of a given trial. Crickets were provided food and
water, and were allowed to acclimate to the arena in the incubator
overnight. The following day, food and water were removed 10 min
prior to the start of each trial to improve behavioural observations.
Each trial (N ¼ 140) began when the opaque barrier was removed,
and each trial ended by either the determination of a clear victor or
after 10 min. All trials were videorecorded and later analysed (see
below), with the exception of the data for four trials that were not
analysed because no victor was determined in these trials within
10 min. Each cricket only underwent a single trial. After trials,
crickets were frozen at -20 �C and later measured for the several
traits. Femur length and head width weremeasured as a proxies for
body size (Roff & DeRose, 2001; Simmons, 1986), and in other
Gryllus crickets, head width strongly correlates with the size of
mandibles, which are sexually dimorphic and can be used during
agonistic contests (Adamo & Hoy, 1995; Alexander, 1961; Judge &
Bonanno, 2008). Dry testes mass was also determined as a proxy
for postcopulatory investment or sperm competition (Simmons &
Fitzpatrick, 2012).

Analyses of Agonistic Contests

Gryllus crickets follow stereotyped patterns of escalation in
agonistic contests among males (Adamo & Hoy, 1995; Rillich et al.,
2007). Thus, agonistic contests were analysed to determine the
following: the latency to initiate a contest (time from removal of
barrier until the onset of antennal fencing, which is the initial stage
of agonistic behaviour in Gryllus crickets: Adamo & Hoy, 1995;
Rillich et al., 2007), the duration of a contest (time from antennal
fencing until an outcome was determined) and the outcome of a
contest (i.e. who won and lost). Contests were also analysed for the
level of aggression (scored on a 0e6 scale): zero (mutual avoid-
ance), 1 (pre-established dominance), 2 (antennal fencing), 3
(unilateral mandible spreading, where only one of the contestants
exhibits aggressive mandible spreading), 4 (bilateral mandible
spreading, where both contests spread mandibles), 5 (mandible
engagement) and 6 (grappling) (sensu Rillich et al., 2007;
Stevenson et al., 2005). Winners and losers can be distinguished
unambiguously by the submission and retreat of the loser, often
coupled with an aggressive song from the victor (Adamo & Hoy,
1995; Alexander, 1961; Bertram, Rook, & Fitzsimmons, 2010).

Statistical Analyses

To create a comprehensive index of body size, morphological
measurements (femur length, head width, body mass and dry
testes mass) were entered into a principal components analysis
(PCA). This PCA produced a principal component (PC) that
explained over 80% of the variance among initial morphological
variables. That is, a cricket with a high PC value was relatively large
and heavy, and had a wide head and large testes. This PC (herein,
‘morphological index’) was used in subsequent analyses.

Several linear mixed models were performed in SPSS (v.22 IBM
Corp., Armonk, NY, U.S.A.), data were log transformed when
necessary, and two-tailed significance was determined at a ¼ 0.05.
Linear models were used on data from each contest to determine
themain (independent) and interactive effects of temperature (cool
versus warm) and time of day (morning versus evening) on the
latency to initiate contests, the contest durations and the level of
aggression during contests. For these models, morphological dif-
ferential (absolute difference in morphological index between each
pair of contestants) was also included as a covariate and block was
included as a random effect. Pairwise, post hoc comparisons were
adjusted using sequential Bonferroni corrections. A binary logistic
generalized linear model was used on data from each cricket to
determine the main and interactive effects of temperature, time of
day and morphological index (covariate) on agonistic contest
outcome (0: loss; 1: win). To examine whether the relative roles of
self-assessment andmutual assessment in contest dynamics (sensu
Prenter et al., 2006; Taylor & Elwood, 2003) changed due to
treatments, correlations between morphological metrics (i.e.
morphological index of loser, morphological index of winner and
morphological differential) and contest metrics (i.e. latency to
initiate, duration and level of aggression of contests) were exam-
ined in each of the four treatment combinations (e.g. cool morning,
cool evening, etc.). To examine the general dynamics of agonistic
contests, correlations between latency to initiate contests, contest
duration and level of aggression during contests were examined by
pooling data across all four treatment combinations.

RESULTS

The level of aggression during contests was influenced by the
interactive effect of temperature and time of day (F1,135 ¼ 4.6,
P ¼ 0.033) where contests were less aggressive during warm eve-
nings (Fig. 1a). Due to this interaction, time of day also influenced
aggression level (F1,135 ¼ 4.4, P ¼ 0.038; evening contests were less
aggressive) (Fig. 1a). Aggression level was not affected by temper-
ature (F1,135 ¼ 3.3, P ¼ 0.073) or morphological differential
(F1,135 ¼ 0.032, P ¼ 0.86).

The duration of contests was driven by the interactive effect of
temperature and time of day (F1,135 ¼ 9.1, P ¼ 0.0036; Fig. 1b).
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Morning fights, in particular, were nearly twice as long when they
occurred in cool conditions compared to warm conditions (Fig. 1b).
Due to this interactive effect, temperature also influenced contest
duration (F1,134 ¼ 5.2, P ¼ 0.024; contests were longer in cooler
conditions). Contest duration was not affected by time of day
(F1,135 ¼ 0.69, P ¼ 0.41) or morphological differential (F1,135 ¼ 0.20,
P ¼ 0.66).

Morphological differential (a proxy for opponents' differences in
RHP) influenced the latency to initiate aggressive behaviour
(F1,135 ¼ 5.5, P ¼ 0.021). Contests with a greater mismatch in
opponent size led to a longer latency (Pearson correlation:
r138 ¼ 0.21). The latency to initiate aggression was not affected by
temperature (F1,135 ¼ 2.2, P ¼ 0.14), time of day (F1,135 ¼ 2.5,
P ¼ 0.11) or a temperature)time interaction (F1,135 ¼ 0.73, P ¼ 0.40).
In three of the four treatment combinations d cool morning, cool
evening and warm morning d there were no significant correla-
tions between morphological metrics (i.e. morphological index of
loser, morphological index of winner, morphological differential)
and contest metrics (i.e. latency to initiate, contest duration, level of
aggression during contests). However, on warm evenings, the la-
tency to initiate contests negatively covaried with the morpho-
logical index of the loser (r35 ¼ -0.46, P ¼ 0.004). There were no
other significant correlations between morphological and contest
metrics on warm evenings.
Morphological index influenced the outcome of contests
(c2

1 ¼19, P < 0.001). A relatively large cricket was more likely to
win a contest than a relatively small cricket (Fig. 2). Contest
outcome was not affected by temperature (c2

1 ¼ 0.038, P ¼ 0.85),
time of day (c2

1 ¼ 0.005, P ¼ 0.94) or a temperature)time inter-
action (c2

1 ¼ 0.23, P ¼ 0.64).
There was only one significant relationship between variables of

agonistic contests. The duration of contests was positively corre-
lated with the level of aggression of contests (Spearman correla-
tion: rS ¼ 0.48, N ¼ 140, P < 0.001).

DISCUSSION

Our results demonstrate that agonistic contests between males
can be influenced by interactions between widespread, covarying
cues experienced during adulthood. The dynamics of maleemale
agonistic contests (i.e. level of aggression and contest duration) in
G. firmus shiftedwith the combined effects of temperature and time
of day (Fig. 1). That is, we found support for additive (but not in-
dependent) effects of temperature and time of day on several
metrics of agonistic contests. Body size or RHP played a role in one
metric of contest dynamics (latency to initiate), and it also influ-
enced the outcomes of contests. Crickets with a larger body mass,
body size, mandible width and testes size (all strongly correlated)
tended to win more frequently against smaller conspecifics (Fig. 2).
In summary, although final outcomes of maleemale contests
appeared solely the result of biotic (body size or RHP) effects, dy-
namics of agonistic contests exhibited plasticity in response to
thermal and circadian effects.

In maleemale competition, morphological advantages, such as
larger body size or more lethal specialized weaponry, can translate
into a greater ability to secure resources (Huntingford, 2013).
Indeed, G. firmus males with a significant size advantage over their
opponents were more likely to win their contests in our study. This
result is consistent with agonistic studies conducted with other
crickets (Adamo & Hoy, 1995; Alexander, 1961; Hack, 1997a; Judge
& Bonanno, 2008; but see ; Bertram, Rook, Fitzsimmons, &
Fitzsimmons, 2011) and invertebrates (DiMarco & Hanlon, 1997;
Elias, Kasumovic, Punzalan, Andrade, & Mason, 2008; Murai &
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Blackwell, 2005; Prenter et al., 2006), as well as across vertebrate
taxad from swordtail fish (Moretz, 2003) to lizards (Huyghe et al.,
2005; Jensson et al., 2005) to elephant seals (Le Boeuf, 1974).
However, the development and maintenance of morphological
advantages are not without costs. In dung beetles, for instance, the
development of horns limits the resources allocated towards
growth of nearby body parts (e.g. eyes, antennae or wings). Thus,
selective pressure for weaponry balances the function of a given
weapon in a specific habitat with the energetic costs of developing
and maintaining this morphological character (Emlen, 2001, 2005;
McCullough, Miller, & Emlen, 2016). Our data further indicate that
taxa without specialized weaponry may similarly exhibit positive
covariation among fitness-related traits. Males in our study with
large morphological indices exhibited both high pre- and post-
copulatory investment (i.e. larger external anatomy indicating high
RHP and larger testes, respectively). Yet, the direction (i.e. positive
or negative) of covariation between traits under pre- and post-
copulatory selection varies across taxa (reviewed in Kahrl, Cox, &
Cox, 2016).

Intraspecific aggression can improve the acquisition or protec-
tion of resources, but it is also associated with increased metabolic
expenditure (e.g. Ros, Becker,& Oliveira, 2006; Xu, Chi, Cao,& Zhao,
2018). In contests between male crickets, displays of higher levels
of aggression (e.g. grappling) are associated with higher rates of
oxygen consumption than less aggressive displays (e.g. antennal
fencing; Hack, 1997b), and maleemale agonism may lead to
damaged mandibles (Judge & Bonanno, 2008). Acheta crickets rely
largely onmutual assessment of size-indicated RHP to decide when
and for how long to engage in an aggressive interaction (Briffa,
2008; Hack, 1997a). For example, when faced with a large size
asymmetry between opponents, the smaller cricket typically dis-
plays less aggression towards the perceivably larger cricket, thereby
avoiding the higher metabolic costs of engaging in a disadvanta-
geous (likely unwinnable) contest, while size-matched crickets
tend to engage in more aggressive contests at higher energetic
expenses (Hack, 1997a). Our results provide some support for
mutual assessment in Gryllus crickets. Across all treatment com-
binations, contests between G. firmus males of mismatched body
size (large difference in morphological index) took longer to initiate
contests, potentially due to smaller males avoiding their larger
opponents. Yet, this correlation (and most others comparing
morphological and contest metrics) was not significant within any
specific treatment combination. Rather, our results indicate a self-
assessment (rather than a mutual assessment) strategy during
warm evenings whereby contests with larger losers were quickly
initiated (Prenter et al., 2006; Taylor & Elwood, 2003). Other spe-
cies similarly rely on self-assessment or individual persistence,
which occurs when disadvantaged (smaller) males do not adopt
risk-abating strategies when engaged in a disadvantageous contest.
For example, small male Anolis lizards display risky behaviour by
invading the territories of larger males and engaging in highly
aggressive, physical contests, despite losing most fights due to their
morphological disadvantages (Jensson et al., 2005). Differences in
strategies among taxa and across contexts suggest that modes of
assessment and factors affecting assessment play a significant role
in determining contest dynamics, although, ultimately, the victor is
typically the individual with greater RHP or body size (reviewed in
Arnott & Elwood, 2008, 2009).

Across animal taxa, the regulation of important behavioural
patterns (e.g. agonistic contests) is a multifactorial process that
adaptively integrates sensory systems (e.g. sensing and responding
to RHP differential) with changes in the environment and circadian
rhythms. For instance, male frogs express a circadian pattern of
peak vocalization (for both attracting females and defending
against competing males) that is regulated by variation in the
microenvironment, such as increased temperature or humidity,
two abiotic factors closely tied to reproductive success (Cui et al.,
2011; Navas & Bevier, 2001). Many fish consistently display
behavioural sleep, and circadian clocks programme sleep behaviour
during the time of day in which fishes' sensory systems are less
effective (e.g. diurnal fish that depend on visual foraging sleep at
night when visibility is low; reviewed by Reebs, 2002). Salmonid
fish can shift from diurnal to nocturnal foraging in response to
lower environmental temperatures, as physiological changes in
retinal pigments make the fish more dark-adapted (Fraser,
Metcalfe, & Thorpe, 1993). Changes in temperature at certain
times of day lead to a significant shift in refuge use in European
minnows d individuals leave their refuges more frequently in the
daytime under warm conditions whereas refuge use in the night
remains low irrespective of temperature, reflecting the role of
temperature and time of day on shifting predator avoidance
behaviour (Greenwood & Metcalfe, 1998). Thus, although many
studies have demonstrated the effects of time of day or tempera-
ture on fitness-related behaviours in isolation, our study is an
important step in determining how these widespread factors
combine to interact and affect important animal behaviours.

We show that the dynamics of maleemale agonistic contests
can be influenced by a combination of temperature and time of day
(Fig. 1). Warm evening conditions elicited significantly lower levels
of aggression compared to other timeetemperature combinations
(Fig. 1a). In addition, temperature influenced the duration of con-
tests in the mornings. Cool conditions resulted in significantly
longer fights than those in warm conditions (Fig. 1b), but this
temperature effect was largely driven by morning (not evening)
dynamics (Fig. 1b), suggesting the combined or additive roles of
time of day and temperature. The observed change in contest
strategy may be adaptive in relation to demand for accurate
opponent assessment and/or to agonistic contest performance
during certain times of the day in the field. In their natural envi-
ronment, males in some species of Gryllus exhibit decreased
movement during the cooler hours early in the photophase
(French & Cade, 1987); thus, this may naturally be a time of day
when there is a lower demand for effective agonistic contest
strategies. Yet, future work in field-caught individuals is necessary
to better understand the ecological and physiological costs and
benefits of agonistic contests and whether plasticity in agonistic
behaviour is evident in different environmental or temporal
contexts.

We offer three proximate explanations for our results of longer,
more aggressive contests (i.e. less efficient contest strategy) in cool
morning conditions (Fig. 1). First, the sensory system may be
influenced or constrained by the additive effects of temperature
and time of day. The sensitivity of visual systems of many species is
controlled, in part, by circadian rhythms (Barlow et al., 1989), which
in turn, may be entrained by both light and temperature (Van
Someren, 2003). These environmental cues may affect males'
abilities to efficiently evaluate the RHP of their competitors.
Maintaining accurate vision may be temperature dependent
because temperature directly modulates synaptic transmission in
invertebrates and mammals where an increase in temperature is
accompanied by an increased effectiveness of synaptic trans-
mission and a higher frequency of neuron firing (Fujii, Sasaki, Ito,
Kaneko, & Kato, 2002; Kullmann & Asztely, 1998; Reig, Mattia,
Compte, Belmonte, & Sanchez-Vives, 2009; Thompson, Masu-
kawa, & Prince, 1985; Volgushev, Vidyasagar, Chistiakova, & Eysel,
2000). As temperature and light fluctuate, animals can compensate
physiologically and/or behaviourally. Physiologically, light detec-
tion in the eyes at low illuminance is improved by spatial and
temporal summation of photoreceptor signals in vertebrates and
insects, but this improvement is offset by reduced temporal and
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spatial resolution (Barlow, 1958; Pick & Buchner, 1979; Warrant,
1999; Warrant, Porombka, & Kirchner, 1996). Hornets decrease
flight speed at low illuminance to behaviourally compensate for
lower-quality visual processing and avoid potential in-flight colli-
sions, and they also alter flight speed with changes in temperature
(Spiewok & Schmolz, 2005). Vision is also important in agonistic
behaviour. Blinded male crickets fight more aggressively than
nonblinded males, even when disadvantaged with smaller body
size or losing a previous agonistic contest (Hofmann &
Schildberger, 2001; Rillich et al., 2007). Our results indicate that
more subtle and widespread factors (i.e. temperature or time of
day, rather than blinding) may influence fitness-related behaviours
that are linked to visual acuity.

Second, longer, more aggressive contests may occur on cool
mornings (Fig. 1) due to the influence of temperature and time of
day on performance or the expression of RHP. Temperature strongly
influences muscle function and locomotor capacity (reviewed in
Bennett,1985,1990; James, 2013). Thus, cooler conditionsmay limit
a male's fighting ability whereby a cooler male's RHP would not be
fully expressed. Furthermore, across many animal taxa, time of day
affects variation in hormone levels, which are responsible for a
range of behaviours d from reproduction to dispersal to agonistic
behaviour (Juarez-Tapia & Miranda-Anaya, 2017; Kou et al., 2008,
2009; Pilorz, Helfrich-F€orster, & Oster, 2018; Schoeller et al., 2016;
Zera, 2016). For example, juvenile hormone (JH) levels fluctuate
daily in crickets and other insects (Bloch, Hazan, & Rafaeli, 2013;
Zera, 2016), and shifts in JH levels are also associated with
agonistic contest success in cockroaches (Kou et al., 2008, 2009).
Future work is necessary to determine whether the additive effects
of temperature or time of day on agonistic contests is due to these
factors' influence on either the perception or expression of RHP.

Third, longer, more aggressive contests (i.e. less efficient contest
strategy) on cool morning conditions (Fig. 1) may be due to moti-
vational differences driven by the combined effects of temperature
and time of day. Across many taxa, contestants compete longer or
more intensely if they are competing for a resource of greater value
(reviewed in Briffa & Sneddon, 2007). Gryllus crickets have a strong
preference for refuges (Hedrick & Kortet, 2006), which are an
important resource across taxa (Berryman & Hawkins, 2006), and
maleemale contests likely serve to mediate refuge use in crickets
(e.g. Adamo& Hoy,1995). If refuges are less valuable or females less
receptive in the morning, then male crickets would be less likely to
engage in maleemale contests in the field during (presumably
cooler) mornings. Thus, staging contests in coolmorning conditions
results in less efficient contests, and it further highlights the need to
better characterize agonistic behavioural dynamics in nature for
our study system. Related, aggressive motivation in Gryllus crickets
is mediated by the neurotransmitter, octopamine (Rillich &
Stevenson, 2011), and octopamine levels in other insects are
modulated by light:dark regimes (Linn, Campbell, Poole, Wu, &
Roelofs, 1996; Linn & Roelofs, 1992) and temperature (Armstrong
& Robertson, 2006). Thus, aggressive motivation may vary with
temperature and time of day due to ultimate and/or proximate
causation (i.e. variation in resource value and/or octopamine levels,
respectively).

In summary, our results reaffirm the importance of morpho-
logical features in determining contest outcome, but they also
demonstrate that environmental cues have complex effects on the
dynamics of agonistic contests. Most notably, interactions between
temperature and time of day can modulate the duration and
aggression level of contests (Fig. 1), as well as contest assessment
strategy. Future work should continue to examine whether the
sensitivity of temperature and circadian-driven sensory or loco-
motor systems may affect males' abilities to efficiently evaluate or
express RHP because this may hinder males' abilities to adopt the
most cost-efficient contest strategies in some conditions. We thus
encourage investigations into the energetic consequences of inef-
ficient decision making related to maleemale contests. For
example, how much energy is wasted on longer, more aggressive
contests during cool mornings relative to the amount of energy
conserved by forgoing energetic investment into the maintenance
of contest-related processes (e.g. sensory and locomotor systems)?
Furthermore, despite the strong correlation between level of
aggressive escalation and contest duration, each contest metric
responded differently to temperature and time of day (Fig. 1),
lending support for the need to examine important animal be-
haviours in a range of environmental conditions to better under-
stand the interdependence and plasticity of behaviours.
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