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Abstract
Many environmental stressors naturally covary, and the frequency and duration of stressors such as heat waves and droughts 
are increasing globally with climate change. Multiple stressors may have additive or non-additive effects on fitness-related 
traits, such as locomotion, reproduction, and somatic growth. Despite its importance to terrestrial animals, water availability 
is rarely incorporated into multiple-stressor frameworks. Water limitation often occurs concurrently with food limitation (e.g., 
droughts can trigger famines), and the acquisition of water and food can be linked because water is necessary for digestion and 
metabolism. Thus, we investigated the independent and interactive effects of water and food limitation on life-history traits 
using female crickets (Gryllus firmus), which exhibit a wing dimorphism mediating a life-history trade-off between flight 
and fecundity. Our results indicate that traits vary in their sensitivities to environmental factors and factor–factor interactions. 
For example, neither environmental factor affected flight musculature, only water limitation affected survival, and food and 
water availability non-additively (i.e., interactively) influenced body and ovary mass. Water availability had a larger effect on 
traits than food availability, affected more traits than food availability, and mediated the effects of food availability. Further, 
life-history strategy influenced the costs of multiple stressors because females investing in flight capacity exhibited greater 
reductions in body and ovary mass during stress relative to females lacking flight capacity. Therefore, water is important in 
the multiple-stressor framework, and understanding the dynamics of covarying environmental factors and life history may 
be critical in the context of climate change characterized by concurrent environmental stressors.
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Introduction

Animals rely on key resources to express fitness-related 
traits, such as growth, fecundity, and locomotor capacity 
(van Noordwijk and de Jong 1986; Stearns 1989; Reznick 
and Yang 1993; Raubenheimer et  al. 2005). Therefore, 
resource limitation may cause stress wherein animals 
struggle to adequately invest resources into multiple traits 

simultaneously (Zera and Harshman 2001; Chown and 
Nicolson 2004). For example, food provides nutrients 
needed for somatic growth and reproduction (Wootton 1977; 
Raubenheimer and Gade 1996; Boggs 2009), and food limi-
tation produces costs for animals—from increased mortality 
to reduced investment into reproductive and somatic tissue 
(Wootton 1977; Boggs and Freeman 2005; Boggs 2009). 
Thus, food limitation can be a stressor (i.e., a factor that 
disrupts homeostasis, performance, or fitness: Schulte 2014; 
Kaunisto et al. 2016) for animals. Periods of food limitation 
are expected to change in frequency and duration with global 
climate change (Ciais et al. 2005; Currano et al. 2008), and 
the effects of some aspects of climate change (i.e., warming) 
on population dynamics may be food dependent in major 
animal taxa (e.g., temperate insects: Adamo et al. 2012).

Although important, food limitation is only one possible 
stressor experienced by animals in nature. Other stressors 
may include temperature extremes, water limitation, and 
anthropogenic stressors, such as chemical, noise, and light 
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pollution (Crain et al. 2008; Benoit et al. 2010; Holmstrup 
et al. 2010). Often, environmental conditions produce mul-
tiple stressors concurrently (Ciais et al. 2005; Holmstrup 
et al. 2010; McBryan et al. 2013; Sarhadi et al. 2018). For 
example, water and food availability may be linked in the 
environment because prolonged drought (water limitation) 
can reduce the availability of primary-produced food (Ciais 
et al. 2005; Zhao and Running 2010; Zhang et al. 2012). 
Animals’ use of water and food can also be interdependent. 
For example, food consumption is linked to water availabil-
ity because water is needed for digestion and is lost through 
excretion (Lepkovsky et al. 1957; Raubenheimer and Gade 
1994, 1996). In turn, feeding can facilitate water intake. For 
example, locusts can maintain water balance by preferen-
tially feeding on foods with higher water content in response 
to increased hemolymph osmolality (Lewis and Bernays 
1985; Simpson and Raubenheimer 2008). Some animals can 
uncouple water availability and food consumption by relying 
heavily on metabolic water production (e.g., desert rodents: 
Frank 1988; tenebrionid beetles: Nicolson 1980). Even so, 
closer examination has revealed that desert rodents will, 
on occasion, supplement their seed diets with insects (70% 
water) and green plants (90% water) to maintain water bal-
ance (Reichman 1975; Walsberg 2000). The effects of food 
or water stress are often examined using a single-stressor 
experimental approach (e.g., manipulating only food while 
controlling for all other variables, including water avail-
ability; Nelson 1993; Boggs and Freeman 2005; O’Brien 
et al. 2019; Seress et al. 2020). However, the biological and 
environmental links between food and water indicate that 
factorial, multiple-stressor studies would be beneficial for 
understanding the role of complex environmental stressors in 
animal life history and physiology (Crain et al. 2008; Boggs 
2009; Holmstrup et al. 2010; Kaunisto et al. 2016).

Multiple stressors may have an additive effect on a given 
animal trait (e.g., survival or growth) where the stress 
due to two factors is simply the sum of either factor alone 
(Todgham and Stillman 2013). However, multiple stressors 
may result in interactive, non-additive effects, such as syner-
gistic or antagonistic effects (Folt et al. 1999; Todgham and 
Stillman 2013; Piggott et al. 2015). Synergistic effects occur 
when the combined cost due to both stressors is greater than 
expected from additive effects alone. Antagonistic effects 
of multiple stressors occur if the combined cost due to both 
stressors is less than either stressor alone. In contrast, the 
effects of two potential stressors may be neither additive 
nor non-additive (e.g., when a trait is affected by only one 
or neither stressor). To date, multiple-stressor studies have 
focused largely on the costs associated with combinations 
of food, chemical, pathogen, and thermal stress (reviewed 
in Crain et al. 2008; Holmstrup et al. 2010; Kaunisto et al. 
2016). Yet, water’s role in the multiple-stressor framework 
is less understood, despite the fundamental role of water 

in terrestrial life and its increasing scarcity in many global 
regions (Gray 1928; Graham 1973; Chown et al. 2011; Takei 
2015; Kaunisto et al. 2016; Sarhadi et al. 2018).

Hence, we used a factorial design to examine the inde-
pendent and interactive effects of food and water limitation 
on several fitness-related traits. In particular, we used female 
sand field crickets (Gryllus firmus Scudder 1902), which 
exhibit two distinct wing morphs or life-history strategies 
that vary in investment into reproductive and somatic tis-
sues during early adulthood (i.e., Roff 1984; Walker and 
Sivinski 1986; Zera 2005). Long-winged (LW) females can 
invest into flight muscle (dorso-longitudinal muscle, DLM) 
at a cost of reduced investment into ovary mass while short-
winged (SW) females do not invest significantly in DLM but 
rather exhibit increased investment into ovaries relative to 
LW females (Roff 1984; Zera et al. 1994; Zera 2005).

We tested several predictions in female G. firmus using 
the multiple-stressor framework. The first set of predictions 
tested whether the effects of multiple stressors were addi-
tive (prediction 1a), non-additive (i.e., interactive: syner-
gistic or antagonistic; prediction 1b), or neither additive nor 
non-additive (prediction 1c) for each trait. We leveraged the 
variation in wing morphology in G. firmus (see above) to test 
another set of predictions (predictions 2a and 2b). Here, we 
tested whether life-history strategy influences environmen-
tal sensitivity. For prediction 2a, we predict water and food 
limitation will result in more costs to LW females because 
these individuals tend to express the trait of flight capacity 
by allocating significant resources toward DLM and associ-
ated flight fuels, whereas SW females do not (Zera and Mole 
1994; Zera et al. 1994; Zera and Denno 1997; Chown and 
Nicolson 2004; Zera 2005). For example, DLM investment 
may be prioritized by LW females in stressful environments 
given the adaptive significance of flight capacity, which is 
to facilitate dispersal away from low-quality environments 
(reviewed in Roff 1994a; Guerra 2011). This prioritization 
of flight capacity may exacerbate the costs of stressors to 
traits not related to flight (e.g., ovary mass or survival). For 
prediction 2b, we predict individuals with greater muscle 
stores will be less sensitive to food and water limitation. 
Specifically, LW females would incur fewer costs during 
food and water limitation because these individuals (unlike 
SW females) can catabolize protein from DLM to intrin-
sically generate water. Some vertebrates oxidize protein 
long before their fat stores are depleted and rely on pro-
tein oxidation to supplement water during reproduction, 
potentially because protein oxidation produces five times as 
much endogenous water as fat oxidation per kJ (sensu ‘pro-
tein for water’ hypothesis: reviewed in McCue et al. 2017; 
Brusch et al. 2018). By examining the role of life-history 
strategy in the costs of multiple stressors, we will improve 
our understanding of the effects of resource-related stress, 
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and we encourage further tests using the multiple-stressor 
framework.

Materials and methods

Study species

The sand field cricket (Gryllus firmus) is native to the 
southeastern United States and found most abundantly in 
Florida (Scudder 1902; Veazey et al. 1976; Capinera et al. 
2004). The animals used in this study were acquired from 
three nearly true-breeding selected blocks of SW and LW 
crickets (Zera and Cisper 2001; Zera and Larsen 2001; 
Zera 2005; Glass and Stahlschmidt 2019; Stahlschmidt 
et al. 2020). Cricket stock originated from populations near 
Gainesville, FL that exhibit morph frequencies of approxi-
mately 0.4 SW and 0.6 LW (Zera et al. 2007). Crickets 
were raised in outbred populations (blocks) that were 
artificially selected for several decades to produce either 
SW or LW morphs that have been previously described 
(Zera 2005). Three replicate blocks of crickets were used 
in this study. Throughout ontogeny, crickets were reared 
in standard conditions: 16-h photoperiod at 28 ± 1 °C with 
ad libitum access to water (water-filled shell vials plugged 
with cotton) and commercial dry cat food.

Experimental design

To examine how water and food limitation independently 
and interactively affected mortality and investment into 
body mass, flight muscle, and reproductive tissue in G. 
firmus, a factorial design was used on SW and LW females 
during early adulthood (i.e., a 2 × 2 × 2 factorial design 
including water treatment, food treatment, and wing mor-
phology as factors). In G. firmus females, the first 5 days 
of adulthood are characterized by intense energy demands 
as this is the period during which many LW females invest 
in flight muscle and females of both wing morphs increase 
ovary mass by 100-fold or more (Zera and Larsen 2001; 
Zera 2005). Crickets feed intermittently in nature (Gang-
were 1961), meaning they may forego feeding for several 
days at a time. Therefore, we examined the effects of food 
presence vs. absence during the first 5 days of adulthood. 
To compare the effects of water vs. food limitation, we 
also manipulated water availability in the same presence 
vs. absence manner. Further, our data indicate that most 
G. firmus survive 5 days without water and/or food (see 
below), and a related species (G. lineaticeps) also exhibits 
relatively high rates of survival after a similar duration of 
water and food limitation (Padda et al. 2021).

Newly molted adults (< 2 days after final ecdysis) were 
assigned to one of four treatment groups: no stress (ad lib. 
water and food [dry cat food]), water stress (no water but 
ad lib. food), food stress (ad lib. water but no food), and 
water + food stress (neither water nor food) for a 5-day 
study period. All crickets (n = 172 for SW, n = 257 for 
LW) were individually housed in small translucent deli 
cups (473 ml) containing shelter (overturned 30 ml opaque 
containers with an access hole) at 28 ± 1 °C. The rela-
tive humidity of cups containing crickets in the ‘no water 
stress’ and ‘water stress’ treatments were 82.5 ± 3% and 
62.5 ± 4%, respectively, as determined by a humidity sen-
sor (U23, Onset Computer Corp., Bourne, MA, USA). 
At the onset of the experiment, each cricket’s body mass 
and wing morphology (SW or LW) were recorded. From 
a subset of the no stress and water stress crickets (n = 31 
for SW, n = 27 for LW), food consumption was measured 
by recording food mass at the onset and at the end of the 
study. After 5 days, mortality was recorded. Final body 
mass of surviving crickets was recorded, and then these 
individuals were euthanized and stored at − 20 °C.

After storage, a subset of crickets that survived treat-
ment (n = 57 for SW, n = 91 for LW) were dried at 55 °C 
to a uniform consistency. Crickets were then re-weighed 
to determine water content (WC; % of final body mass), 
which allowed for the determination of the effects of treat-
ment (particularly, water availability) on water balance. 
The remaining surviving crickets (n = 88 for SW, n = 84 for 
LW) were dissected. During dissections, flight musculature 
(DLM) was scored from 0 to 2, where 0 indicated DLM 
was absent, 1 indicated white, histolyzed (non-functional) 
DLM, and 2 indicated pink, functional DLM (Crnokrak and 
Roff 2002; King et al. 2011; Glass and Stahlschmidt 2019). 
None of the SW crickets in our study exhibited functional 
DLM, and LW crickets largely exhibited histolyzed DLM 
(see below). Previous work indicates that LW G. firmus 
exhibiting histolyzed DLM (LW[h]) are more physiologi-
cally similar to SW G. firmus relative to LW G. firmus exhib-
iting functional DLM (LW[f]) (Zera et al. 1997; Zera and 
Larsen 2001). Yet, the distinction between LW (i.e., both 
LW[h] and LW[f]) and SW G. firmus is important because 
LW(h) and LW(f) G. firmus can differ from SW G. firmus 
in adult body mass, DLM status, and rates of development 
and growth (Glass and Stahlschmidt 2019). The behavioral 
and investment strategies of the wing morphs vary in their 
sensitivities to oxidative and immune challenges in G. firmus 
(Stahlschmidt et al. 2020; Stahlschmidt and Glass 2020), 
and to combined water limitation and heat in G. lineaticeps 
(Padda et al. 2021). This design allowed for the examination 
of the effects of wing morphology—LW or SW—from a 
large data set (n = 429), and of wing morphology and flight 
muscle status—SW; LW(h), LWs with DLM scores of 0 or 
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1; and LW(f), LWs with DLM scores of 2—from a smaller 
subset of data (n = 172).

Next, ovaries were removed from dissected crickets 
(n = 172) and dried at 55 °C to a constant mass to estimate 
investment into reproduction (Roff and Fairbairn 1991; 
Crnokrak and Roff 2002; Glass and Stahlschmidt 2019). 
Ovary mass in G. firmus is proportional to egg number (Roff 
1994b; ZRS unpublished). The legs of all crickets (includ-
ing those that did not survive treatment) were collected, and 
femurs were measured. Femur length was used as a proxy 
for adult body size because crickets cease structural body 
growth after reaching the adult stage (Simmons 1986; Glass 
and Stahlschmidt 2019; Nguyen and Stahlschmidt 2019). 
Femur length positively correlated with absolute water con-
tent (i.e., mg per individual; R = 0.37; P < 0.001).

Statistical analyses

Data were tested for normality using Shapiro–Wilk tests, 
and natural logarithm-transformations were required for 
food intake, dry ovary mass, and WC data sets. Data were 
then analyzed using SPSS (v.25 IBM Corp., Armonk, NY), 
and two-tailed significance was determined at α = 0.05. To 
examine the independent and interactive effects of treat-
ments (water and food as separate fixed factors) and either 
wing morphology (herein, “morph”: SW or LW) or (when 
possible) morph-DLM status (herein, “morph-DLM”: SW, 
LW[h], or LW[f]), a restricted maximum likelihood method 
was used for linear mixed model analyses on final body 
mass, food consumption, dry ovary mass, and WC. For each 
mixed model, treatments and morph were included as main 
effects—that is, a total of three treatments (food, water, and 
morph or morph-DLM; note: food stress and combined food 
and water stress crickets were excluded from food consump-
tion models). Although individuals were randomly assigned 
to treatment groups, initial body mass and femur length var-
ied across morph and/or treatment groups. Therefore, initial 
body mass was included as a covariate for the final body 
mass, food consumption, and ovary mass models because 
it was an independent proxy for body size. Final body mass 
was not included as a covariate because it was not independ-
ent of food consumption or ovary mass. All models included 
selected block as a random effect, and tested for interactions 
between and among treatments and morph.

An ordinal logistic generalized linear mixed model was 
performed on the categorical DLM scores (scored from 0 
to 2, see above) and treatments and morph were included 
as main effects. Similarly, a binary logistic generalized lin-
ear model was used on data from each cricket to determine 
the main and interactive effects of treatments and morph 
on survivorship (0: did not survive treatment; 1: survived 
treatment). For both generalized linear models, femur length 

was included as a covariate to account for variation in body 
size. Non-significant interactive effects were removed from 
the final (reported) generalized linear models because doing 
so did not increase the Akaike information criterion, and we 
report the most parsimonious models below.

For all models, values are presented as estimated mar-
ginal means (± 95% confidence intervals) because covari-
ates were included in analyses—that is, reported values 
account for variation in body size (femur length) or body 
mass depending on the analysis (see above). When signifi-
cant interactive effects were detected (e.g., the interaction 
of food and water treatments on WC; see below), post hoc 
analyses on pairwise comparisons were used to determine 
differences between treatment group combinations. Post hoc 
tests used the sequential Bonferroni method to control for 
Type I error rate due to multiple comparisons.

Results

There was a positive effect of water availability on dry food 
consumption where individuals with access to water had 
higher food consumption than those without water access 
(Table S1; Fig. 1). Food consumption also positively cova-
ried with starting body mass, but it was not influenced by 
morph-DLM or the interaction between water treatment and 
morph (Table S1; Fig. 1).

Crickets with access to water had higher water content 
than water-limited individuals, and food availability also 
affected water content (Table S2; Fig. 2A). Short-winged 
crickets also had greater water content than LWs (Table S2; 
Fig. 2A). There was a significant interactive effect of food 
and water treatments on water content where individuals 
given ad lib. access to water but not food had the highest 

Fig. 1   Effects of water stress on food consumption during early adult-
hood in female G. firmus during early adulthood. Short-winged (SW) 
morphs are depicted by gray bars, and long-winged (LW) morphs are 
depicted by white bars. Diagonally striped bars designate water stress. 
Values are displayed as estimated marginal means (± s.e.m.) because 
initial body mass was included as a covariate
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water content (Table S2; Fig. 2A). Water content was not 
affected by other interactive effects (Table S2; Fig. 2A).

Survival was greater in SW individuals, larger individ-
uals, and those with access to water (Table S3; Fig. 2B). 
There was not a significant effect of food treatment on sur-
vival (Table S3; Fig. 2B), and all treatment–morph interac-
tions were also non-significant (all P > 0.40).

Final body mass was greater in individuals with access 
to food and to water, and it was influenced by initial body 
mass (Table S4; Fig. 3A). An interactive effect of food and 
water influenced final body mass where the positive effect 
of food on body mass was greater when water was available 
(Table S4; Fig. 3A). Final body mass was influenced by a 
morph-DLM (dorso‐longitudinal muscle) and food interac-
tion (Table S4) where body mass in LW(h) crickets incurred 
fewer costs due to food limitation (Fig. 3A). Morph-DLM 
did not influence final body mass, and there were no 
interactive effects of morph-DLM and water treatment or 

morph-DLM, water, and food on final body mass (Table S4; 
Fig. 3A).

Ovaries were heavier in crickets with access to food, 
in those with access to water, and in SW or LW(h) crick-
ets (Table S5; Fig. 3B). An interactive effect of food and 
water influenced ovary mass where the positive effect of 
food on ovary mass tended to be stronger when water was 
available (Table S5; Fig. 3B). Ovary mass was also affected 
by an interaction among morph-DLM, water, and food, and 
by initial body mass (Table S5; Fig. 3B). However, it was 
not affected by interactions between morph-DLM and food 
or morph and water (Table S5; Fig. 3B). Food and water 
treatments did not influence DLM status, but LW females 
had more functional flight muscle than SWs (Table S6; 
Fig. 4). Larger females also had higher flight muscle scores 
(Table S6).

(a)

(b)

Fig. 2   Effects of no stress, food stress, water stress, and combined 
food and water stress during early adulthood on a water content (% of 
fresh mass), and b survival in female G. firmus. Short-winged (SW) 
morphs are depicted by gray bars, and long-winged (LW) morphs are 
depicted by white bars. Diagonally striped bars designate individuals 
with access to food, and bolded bars designate those with access to 
water. Values are displayed as estimated marginal means (± s.e.m.) 
because either body mass or size was included as a covariate (see 
text for details). Letters above each column denote differences among 
treatment group combinations for traits influenced by interactive 
effects (see text for details)

(a)

(b)

Fig. 3   Effects of no stress, food stress, water stress, and combined 
food and water stress during early adulthood on a final body mass 
and b ovary mass in female G. firmus. Short-winged (SW) morphs 
are depicted by dark gray bars, long-winged morphs with histolyzed 
flight muscle (LW[h]) are depicted by light gray bars, and long-
winged morphs with functional flight muscle (LW[f]) are depicted by 
white bars. Diagonally striped bars designate individuals with access 
to food, and bolded bars designate those with access to water. Values 
are displayed as estimated marginal means (± s.e.m.) because initial 
body mass was included as a covariate (see text for details). Letters 
above each column denote differences among treatment group combi-
nations for traits influenced by interactive effects (see text for details)
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Discussion

Single-stressor studies are commonly used to investigate the 
effects of environmental stress on life-history traits (Wall 
1970; Weaver and Pratt 1981; Stillman 2003; Deutsch 
et al. 2008; Colinet et al. 2018). These studies are impor-
tant for understanding the effects of stress on life history 
because they are direct and convey the importance of a given 
stressor while controlling for or eliminating confounding 
factors. Yet, due to the complexity of natural environments 
where concurrent stressors are common, multiple-stressor 
studies likely better reflect conditions in nature (Arnell 
1999; O’Brien et al. 2004; Crain et al. 2008; Boggs 2009; 
Holmstrup et al. 2010; Kaunisto et al. 2016; Sarhadi et al. 
2018). Using a multiple-stressor framework, we determined 
that water and food stress independently and interactively 
influenced body water content, body mass, and reproduc-
tive investment in a wing-dimorphic insect (Figs. 2 and 3). 
Further, body size influenced absolute water content, flight 
capacity, and survival; and wing morphology influenced 
flight capacity and survival (Figs. 2 and 3). Together, these 
results demonstrate the value of accounting for biotic vari-
ation and multiple stressors when investigating the effects 
of environmental stress on life history. We encourage future 
investigations into additional biotic factors (e.g., sex and 
life-history stage) and stressors associated with climate 
change (e.g., temperature extremes).

Support was not found for prediction 1a (additive effects 
of multiple stressors). The traits examined in our study sus-
tained no costs, costs from only a single (not both) stressor, 
or non-additive costs related to food and water limitation. 
For example, survival did not experience additive or non-
additive effects because it incurred costs from water (but 
not food) limitation (Fig. 2B), in support of prediction 1c. 
This result demonstrates the value of integrating water avail-
ability into the multiple-stressor framework (Arnell 1999; 

Mueller and Seneviratne 2012). Terrestrial ecosystem pro-
ductivity is limited by water availability, and climate models 
predict an increase in the frequency and duration of droughts 
globally (O’Brien et al. 2004; Ciais et al. 2005; Mueller 
and Seneviratne 2012; Sarhadi et al. 2018). Although there 
was no effect of food availability on survival in our study, 
reduced survival as a result of food limitation has been docu-
mented across a range of taxa, including other insects, mam-
mals, and birds (Juliano 1986; Williams et al. 1993; Huitu 
et al. 2003; Davis et al. 2005). Previous work in G. firmus 
has shown that food limitation reduced survival when crick-
ets were reared (i.e., developed) under food stress (Glass 
and Stahlschmidt 2019). In contrast, food limitation in our 
study was relatively brief (5 days) and occurred only during 
the adult stage. Further, crickets likely feed intermittently 
in nature (Gangwere 1961). Thus, a 5-day food limitation 
period may be insufficient to impact survival, and prolong-
ing our food stress treatment would undoubtedly increase 
its effect on survival. Therefore, discrepancies between our 
results and those of other food stress experiments may be 
the result of variation in the timing of food stress and/or 
taxonomic differences.

Prediction 1b (non-additive effects of multiple stressors) 
was supported by some of our results because combined 
food and water stressors had non-additive effects on somatic 
and reproductive tissues. Specifically, there was no addi-
tional cost to final body mass or ovary mass when animals 
encountered both stressors compared to when they encoun-
tered only one stressor—that is, food stress alone and water 
stress alone had relatively similar effects as combined food 
and water stress (Fig. 3). There was an interactive effect 
of food and water limitation on final body mass and ovary 
mass where the benefits of food availability were only 
observed when water was available (Fig. 3), and this was 
likely because water limitation resulted in a > fivefold reduc-
tion in food intake on average in our study. This food–water 

Fig. 4   Effects of no stress, 
food stress, water stress, and 
combined food and water stress 
during early adulthood on flight 
muscle in female G. firmus. 
Flight muscle data are displayed 
in frequencies. White bars indi-
cate an absence of flight muscle 
(dorso-longitudinal muscle, 
DLM), gray bars indicate 
histolyzed DLM, and black bars 
indicate functional DLM
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interaction may be due to water’s role in digestion because 
water is needed as a solvent to transport and digest food 
in the alimentary canal and for excretion (Raubenheimer 
and Gade 1994; Woods and Bernays 2000; Gibbs et al. 
2003; Hinsberger and Sandhu 2004). Our results support 
this argument as individuals without access to water ate less 
and had a lower water content (Figs. 1 and 2A). Thus, water 
limitation reduces the consumption and digestion of food 
(but not vice versa; food limitation increased water content: 
Fig. 2A), and eating food in the absence of water may even 
be costly (Gillespie and McGregor 2000; Sinia et al. 2004; 
Clissold et al. 2014). For instance, feeding during water limi-
tation can disrupt gastrointestinal regulation and dehydrate 
non-gastrointestinal tissues (Strominger 1947; Lepkovsky 
et al. 1957; Cizek 1959). Together, our results signify the 
importance of water availability to life history because water 
limitation affected more fitness-related traits than food limi-
tation, and water availability mediated the benefits of food 
availability (Figs. 2 and 3).

We did not detect an effect of food or water limitation 
on flight muscle (DLM; Fig. 4). Thus, it is possible that the 
maintenance of flight muscle is not plastic in response to 
environmental stress. However, previous work has demon-
strated that G. firmus experiencing food limitation during the 
adult stage (King et al. 2011) and during development (Glass 
and Stahlschmidt 2019) prioritize flight muscle investment, 
possibly as an adaptive mechanism to leave poor condi-
tions. Further, flight muscle capacity in G. firmus can also 
be reduced during stress related to oxidative damage and to 
immune challenge (Stahlschmidt et al. 2020; unpublished). 
Other insect studies have demonstrated bidirectional plastic-
ity in flight muscle status in response to stressors, support-
ing both flight muscle maintenance and loss due to stress 
(Stegwee et al. 1963; Edwards 1969; Sniegula et al. 2017). 
Non-insect taxa also exhibit phenotypic plasticity in flight 
muscle physiology. Although the basal metabolism of birds 
varies dramatically to that of insects, flight muscle in birds 
is analogous to that of insects because the flight muscles of 
birds and insects are similar in composition, use of flight 
fuels, and flight muscle metabolism (Suarez et al. 1991; 
Jenni-Eiermann and Jenni 1992; Zera and Mole 1994; Zera 
et al. 1994; Jenni and Jenni-Eiermann 1998; Klaassen et al. 
2000; Marden 2000). The flight muscles of migratory birds 
atrophy during overwintering, and some birds may also cat-
abolize flight muscle when they are water stressed or breed-
ing (e.g., to reallocate water and nutrients to egg production) 
(Veasey et al. 2000; Weber and Hedenström 2001; Gerson 
and Guglielmo 2011a, b). Furthermore, seasonal plasticity 
of flight muscle is documented for some shorebirds (Swan-
son and Merkord 2013). Although the metabolic physiology 
of insect and non-insect taxa (i.e., birds) flight muscle is 
different, their observed responses to environmental stress-
ors are consistently similar within both taxonomic groups. 

Considering the variable responses to the environment (e.g., 
some stressors promote flight capacity while others reduce 
flight capacity), future studies should continue to examine 
the independent and interactive effects of multiple stress-
ors on flight muscle plasticity in crickets given its link to 
lifetime reproduction (Roff 1984) and dispersal ability (Sun 
et al. 2020).

Across taxa, investment into flight muscle often trades 
off with investment into other traits (Roff 1977; Zera et al. 
1994; Zera and Mole 1994; Veasey et al. 2001; Kullberg 
et al. 2005; Zera 2005; Nespolo et al. 2008; Owen and 
Moore 2008). For example, our results indicate that LW(f) 
G. firmus had reduced investment into reproduction when 
stressed (Fig. 3B). Similarly, flight capacity is associated 
with reduced reproductive investment in other wing-dimor-
phic insects (Guerra 2011). In insects, flight capacity can 
also trade-off with development rates and other physi-
ological traits (Chown and Nicolson 2004). Migrating birds 
exhibit reduced immune function and increased oxidative 
damage (Schwilch et al. 1996; Costantini et al. 2008; Owen 
and Moore 2008; Jenni-Eiermann et al. 2014), and flying 
reduces immune function in other Gryllus species (Adamo 
et al. 2008). Recent work expands the costs of macroptery in 
G. firmus to other non-reproductive traits because environ-
mental variability during development can influence flight-
related trade-offs with body size and with rates of growth 
and development (Glass and Stahlschmidt 2019). In agree-
ment with previous literature evaluating the costs of flight 
muscle, our results indicate that flight muscle maintenance 
may produce yet another cost: increased mortality (LW G. 
firmus had lower survival than SW individuals: Fig. 2B; 
Chown and Nicolson 2004). Future work should clarify 
this potential cost by comparing the flight muscle status of 
surviving and dead LW crickets to formally test the predic-
tion that flight muscle investment is directly associated with 
stress-induced death. We encourage the continued examina-
tion of the dynamic interplay between flight capacity and 
other traits, in the context of environmental variability and/
or stress.

Prediction 2a (flight capacity influences environmental 
sensitivity) was partially supported because the body and 
ovary mass in flight-capable (i.e., LW[f]) G. firmus tended 
to be particularly sensitive to food and/or water availability 
(Fig. 3). Prediction 2b was not supported. As in other stud-
ies, LW G. firmus did allocate significantly more resources 
toward DLM relative to SW females (Fig. 4; Roff 1977; 
Roff 1984; Roff and Fairbairn 1991; Zera and Mole 1994; 
Zera et al. 1994; Zera and Denno 1997; Zera 2005; Nespolo 
et al. 2008). Yet, despite likely containing more fat body 
than SWs (Zera 2005), LW females in our study exhib-
ited increased mortality when stressed, potentially due to 
reduced water content (Fig. 2). Long-winged female Gryl-
lus tend to exhibit greater metabolic rates than SW females 
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(Zera and Mole 1994; Zera et al. 1997; Nespolo et al. 2008; 
but see Clark et al. 2016; Stahlschmidt and Glass 2020), 
and higher mortality in LW females may be associated 
with their greater metabolic rates relative to SW females. 
Investment into flight muscle in Gryllus likely incurred a 
survival cost in our study (LWs in Fig. 2B), but some birds 
use flight muscle to their advantage because they catabolize 
muscle tissue to promote fitness. For example, survival and 
reproductive investment in birds can increase when protein 
is catabolized to liberate protein-bound water (Veasey et al. 
2000, 2001; Kullberg et al. 2005; Gerson and Guglielmo 
2011a, b). This taxon-specific difference in the sensitivity 
of muscle tissue to environmental stress (i.e., whether to 
catabolize or maintain muscle during stress) may be linked 
to the functional or adaptive significance of a given muscle 
tissue. Flight muscle in Gryllus and other insects allows for 
dispersal when environmental conditions are poor (Edwards 
1969; Davis 1975; Roff 1994a; Guerra 2011), which likely 
creates strong selection on flight muscle maintenance in 
stressful environments. However, muscle tissue used for 
locomotion and prey capture is catabolized during reproduc-
tion in female pythons, and protein and water are allocated 
into eggs when breeding-related foraging and feeding ceases 
(Stahlschmidt et al. 2011; Brusch et al. 2018). A “protein for 
water” strategy is also used by passerine birds during migra-
tion, which catabolize protein to maintain water balance 
during long flights (Gerson and Guglielmo 2011a, b), and 
by water-stressed rodents (Bintz and Mackin 1980; McCue 
et al. 2017). Although this strategy is used by animals with 
high- and low-energy demands (i.e., birds and mammals, 
and pythons, respectively), its ubiquity across animal taxa 
is unknown and may be absent in protein-limited animals. 
Thus, subsequent work must continue to consider the func-
tional or adaptive significance of a given muscle tissue in the 
context of the studied animal’s life history when making pre-
dictions about the effects of multiple stressors (particularly, 
those related to water stress) on muscle tissue.

Experimental and biogeographical evidence indicates 
strong selection for smaller body size due to warming (e.g., 
temperature-size rule, and Bergmann’s rule: Bergmann 
1847; reviewed in Angilletta 2009; Gardner et al. 2011). 
However, smaller individuals are particularly susceptible 
to non-thermal stressors associated with warming events 
(water and food limitation: Arnell 1999; O’Brien et al. 2004; 
Ciais et al. 2005; Sarhadi et al. 2018). As examples, smaller 
G. firmus had reduced water stores, survival, and disper-
sal capacity in our study, and smaller desert songbirds are 
more vulnerable to water loss and dehydration than larger 
birds (Albright et al. 2017). Thus, a smaller body size may 
increase fitness when considering only warming, but a small 
body size could increase fitness costs when considering mul-
tiple concurrent stressors (e.g., thermal and non-thermal 
stressors). A smaller body size also constitutes fitness costs 

because smaller animals have fewer mating opportunities, 
produce fewer and smaller offspring, and are less likely to 
hold territory (Peters and Peters 1986; Mathis 1991; Tejedo 
1992; Kolm 2001; Dubey et al. 2009). Recent work indi-
cates that both large and small body sizes are likely suscep-
tible to multiple environmental stressors (Gibb et al. 2018). 
Therefore, understanding how animal body size responds to 
environmental stressors exacerbated by climate change (e.g., 
drought frequency and duration) is crucial to predicting eco-
logical change, such as changes in phenology and population 
dynamics (Sillett et al. 2000; Walther et al. 2002).

In summary, our study illustrates the importance of 
incorporating water into the multiple-stressor framework 
by demonstrating that water availability has a larger effect 
on traits than food availability, affects more traits than 
food availability, and mediates the effects of food avail-
ability in G. firmus (Figs. 2 and 3). The multiple-stressor 
framework has a rich history in ecotoxicology where it has 
been applied to systems in which water is freely available 
(i.e., aquatic ecosystems: Cada et al. 1987; Johnsen and 
Jakobsen 1987; reviewed in Kaunisto et al. 2016). Thus, 
the role of water has been underemphasized in the multi-
ple-stressor framework despite the importance of water to 
terrestrial animals (e.g., MacMillen 1990). Understanding 
water limitation, including its interactive effects with other 
covarying environmental factors, is increasingly important 
as the frequency and duration of droughts increase with 
climate change (Arnell 1999; Ciais et al. 2005; o’Brien 
et al. 2004; Mueller and Seneviratne 2012). Three major 
components of climate change (i.e., water and food vari-
ability, and warming) naturally covary. Hence, future 
multiple-stressor work should continue to explore the 
effects of all three factors on life-history traits, as well 
as on trait–trait interactions (e.g., shifts in trade-offs or 
allocation strategies) (Killen et al. 2013; Glass and Stahl-
schmidt 2019; Kellermann and Heerwaarden 2019; Padda 
et al. 2021).
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