The Role of Python Eggshell Permeability Dynamics in a Respiration-Hydration Trade-Off

Zachary R. Stahlschmidt1,*
Benoit Heulin1
Dale F. DeNardo1
1School of Life Sciences, Arizona State University, Tempe, Arizona 85287; 2Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6553, Station Biologique, 35380 Paimpont, France

Accepted 3/1/2010; Electronically Published 5/17/2010

ABSTRACT

Parental care is taxonomically widespread because it improves developmental conditions and thus fitness of offspring. Although relatively simplistic compared with parental behaviors of other taxa, python egg-brooding behavior exemplifies parental care because it mediates a trade-off between embryonic respiration and hydration. However, because egg brooding increases gas-exchange resistance between embryonic and nest environments and because female pythons do not adjust their brooding behavior in response to the increasing metabolic requirements of developing offspring, python egg brooding imposes hypoxic costs on embryos during the late stages of incubation. We conducted a series of experiments to determine whether eggshells coadapted with brooding behavior to minimize the negative effects of developmental hypoxia. We tested the hypotheses that python eggshells (1) increase permeability over time to accommodate increasing embryonic respiration and (2) exhibit permeability plasticity in response to chronic hypoxia. Over incubation, we serially measured the atomic and structural components of Children's python (Antaresia childreni) eggshells as well as in vivo and in vitro gas exchange across eggshells. In support of our first hypothesis, A. childreni eggshells exhibited a reduced fibrous layer, became more permeable, and facilitated greater gas exchange as incubation progressed. Our second hypothesis was not supported, as incubation O2 concentration did not affect the shells' permeabilities to O2 and H2O vapor. Our results suggest that python eggshell permeability changes during incubation but that the alterations over time are fixed and independent of environmental conditions. These findings are of broad evolutionary interest because they demonstrate that, even in relatively simple parental-care models, successful parent-offspring relationships depend on adjustments made by both the parent (i.e., egg-brooding behavioral shifts) and the offspring (i.e., changes in eggshell permeability).

Introduction

Since its appearance in the fossil record 350 million years ago (Paton et al. 1999), the amniotic egg has allowed animals to adopt a fully terrestrial life history, and it thus represents a momentous reproductive adaptation. In addition to maintaining embryonic water balance, eggshells and extraembryonic membranes reduce microbial and invertebrate infiltration (Packard and Packard 1980) while facilitating greater respiratory gas exchange than the gelatinous coat of nonamniotic amphibian eggs (Packard and Seymour 1997; Stewart 1997). However, as incubation progresses, the shell must provide for an increasing demand for respiratory gas exchange while maintaining embryonic water balance. This balance can be mediated by biotic (e.g., egg size or embryonic metabolism) or abiotic (e.g., incubation humidity, water potential, and temperature) factors (reviewed in Deeming and Ferguson 1991; Deeming 2004).

This egg respiration-hydration trade-off is not unique to amniotes; the diffusive conductance of oxygen (Go2) in common hawkmoth (Manduca sexta) egg coats increases as incubation progresses (Zrubek and Woods 2006). Among amniotes, the avian eggshell has been most widely studied (Seymour 1985; Deeming and Ferguson 1991) and represents an extreme trade-off, given the high metabolic needs of avian embryos and the relatively exposed nature of most avian incubation environments. For example, over the course of incubation in birds, many eggs develop a highly vascularized chorioallantoic membrane (Andrews 2004), and some reduce shell thickness via embryonic incorporation of shell-derived calcium (Booth and Seymour 1987). While both of these changes accommodate the increased respiratory demands of the embryo, the latter strategy also increases eggshell water vapor conductance (GvH2O, the H2O flux rate after correction for pressure gradient) and increases the rate of egg water loss (Ar 1991).

In addition to birds, increased eggshell Go2 during incubation has also been demonstrated in the amniotic eggs of Johnston's crocodiles (Crocodylus johnstoni) and the pleurodiran turtle Emydura macquarii (Thompson 1985; Whitehead 1987). Birds, crocodilians, and some turtles, including E. macquarii, produce calcium-rich rigid-shelled eggs that have a high resistance to water (Thompson and Speake 2004). However, most
Oviparous squamates, which represent 96% of living reptile species, lay parchment-shelled eggs (Pough et al. 2001; Deeming and Unwin 2004). Parchment shells are made up of a minimal calcareous layer interfaced with a fibrous inner layer (Thompson and Speake 2004) and exhibit a G\textsubscript{H\textsubscript{2}O} more than 700 times that of avian eggshells (Deeming and Unwin 2004). To avoid desiccation, parchment-shelled eggs are typically buried in moist substrate and actually gain water throughout incubation (Belinsky et al. 2004).

Pythons (family Pythonidae) are atypical squamates in that females usually brood their eggs throughout the incubation period (Wilson and Swan 2003). During brooding, eggs often have little if any contact with the substrate and thus absorb little to no water. Python egg brooding enhances embryonic temperature (Vinegar et al. 1970; Slip and Shine 1988; Stahlschmidt and DeNardo 2009a), maintains embryonic water balance (Aubret et al. 2005; Lourdais et al. 2007), and reduces egg predation (Madsen and Shine 1999). Brooding is a dynamic process wherein the egg-brooding female spends most of the time tightly coiled around her eggs but periodically loosens her coils (Stahlschmidt and DeNardo 2008; Stahlschmidt et al. 2008). In Children’s pythons (Antaresia childreni Gray 1842), we have shown that tight coiling maintains embryonic water balance at the cost of embryonic respiration, while postural adjustments facilitate embryonic respiration at the cost of embryonic water balance (Stahlschmidt and DeNardo 2008; Stahlschmidt et al. 2008). However, despite a five- to sixfold increase in embryonic O\textsubscript{2} requirements, the rate and duration of ventilating postural adjustments do not increase during incubation, and this leads to a hypoxic developmental environment that imposes costs to offspring (Stahlschmidt and DeNardo 2008, 2009b; Stahlschmidt et al. 2008). As a result, it is logical to hypothesize that python eggshells increase \textit{O}_{2} or \textit{O}_2 permeability (K\textsubscript{O}_2, the \textit{O}_2 flux rate after correction for pressure gradient and surface area) as incubation progresses.

In addition to determining whether python eggshell conductance and permeability change over time, it is of interest to determine whether such changes are responsive to environmental conditions. During chronic hypoxia, reptile embryos enhance their access to ambient oxygen by increasing the surface area available for gas exchange (i.e., chorioallantoic vasculature; Corona and Warburton 2000) or the ability to pump blood to the periphery (Crossley and Altimiras 2005; Stahlschmidt and DeNardo 2009b). Similarly, the eggshell may be adaptively plastic, such that, for example, chronic exposure to hypoxia increases eggshell permeability. Pythons are ideal candidates to test such a response because egg brooding naturally creates a hypoxic developmental environment (Stahlschmidt and DeNardo 2008).

First, we used lab-reared \textit{A. childreni} clutches to test the hypothesis that python eggshells change structurally over the course of incubation and that this results in an increase in their permeability to \textit{H}_2\textit{O} vapor and \textit{O}_2. To test this hypothesis, we serially evaluated (1) eggshell structure and atomic composition, (2) in vitro eggshell permeability to \textit{O}_2 and \textit{H}_2\textit{O} (K\textsubscript{O}_2 and K\textsubscript{H\textsubscript{2}O}, respectively), and (3) in vivo egg clutch \textit{O}_2 consumption and water loss rates (\textit{V}_{\textit{O}_2} and \textit{M}_\textsubscript{H\textsubscript{2}O}, respectively). We predicted that eggshell permeability, egg \textit{V}_{\textit{O}_2}, and egg \textit{M}_\textsubscript{H\textsubscript{2}O} would increase as incubation progressed. Second, we tested the hypothesis that python eggshells exhibit morphological plasticity in response to chronic hypoxia. Thus, we compared eggshell permeabilities of late-stage \textit{A. childreni} eggs reared in normoxia (NRM) with those reared in biologically relevant hypoxia (LOW). We predicted higher permeability in the LOW eggshells. Support for these hypotheses would demonstrate the compensatory ability of python eggs to respond to relevant intrinsic (increased \textit{O}_2 requirements) and extrinsic (reduced \textit{O}_2 availability) factors. Broadly, results from these experiments will increase our knowledge of reptile embryology and the coevolution of maternal and offspring adaptations of parental care.

Material and Methods

Study Species and Reproductive Husbandry

We used a long-term captive colony of \textit{Antaresia childreni} maintained at Arizona State University, Tempe, for this study. \textit{Antaresia childreni} are medium-sized (up to 1.2 m in snout-to-vent length and 600 g in body mass), nonvenomous, constricting, pythonid snakes that inhabit rocky areas in northern Australia (Wilson and Swan 2003). Husbandry, breeding, and incubation of the animals followed methods described previously (Lourdais et al. 2007; Stahlschmidt and DeNardo 2008). All live animal use in this study was approved by the Arizona State University Institutional Animal Care and Use Committee (protocol 05-792R). Briefly, a few days before oviposition, we moved each gravid python into a Teflon-coated 1.9-L brooding chamber that was opaque on the bottom and sides but transparent on the top to allow observation. We placed brooding chambers in an environmental chamber that had a 14L : 1OD photoregime and maintained temperature at 31.5°C (range 31.2°C–31.8°C), the species’ preferred incubation temperature (Lourdais et al. 2008). Within 1 h of oviposition, eggshells were opaque and dry to the touch. The imperfect ellipsoid eggs were adhered to one another in a clutch conglomerate, which made conventional measurements of surface area infeasible. However, at oviposition, we briefly removed each female from her clutch to determine clutch size, clutch mass, and female postoviposition mass. Within 1 wk of oviposition, we removed clutches from females and artificially incubated them to term at 31.5°C (range 31.2°C–31.8°C) in 1.0- or 1.4-L plastic containers with a moistened perlite substrate.

Structural and Atomic Analyses Experiment

To reduce desiccation in the female-free environment, we partially buried six recently laid (≤7 d) NRM clutches in 60–80 mL of moistened perlite suspended with fine mesh above 200–300 mL of distilled water in 1-L dual-ported plastic containers. We placed all of the clutch-housing containers in a 765-L incubator (model 3770, Forma Scientific, Marietta, OH) maintained at 31.5°C (range 31.2°C–31.8°C) for the remaining incubation duration. We supplied clutches with compressed
outside air via a manifold system. We hydrated influent air supplies to near vapor saturation by bubbling the air through heated columns of distilled water and maintained the flow rate to each clutch at 50 mL min\(^{-1}\), using an adjustable flow meter (FL-344, Omega Instruments, Stamford, CT) that was calibrated under experimental conditions.

Although intraclutch variation in eggshell characteristics in *A. childreni* is unknown, we used a subsampling repeated-measures experimental design for this experiment and the in vitro gas-exchange experiment (see below) because of the inability to measure serially the same egg (i.e., eggs had to be sacrificed to conduct the experiment) and the large interclutch variation in other *A. childreni* egg traits (Stahlschmidt and DeNardo 2009b; Z. R. Stahlschmidt and D. F. DeNardo, unpublished data). Specifically, we terminally sampled one egg from each clutch at each of three time points (7, 24, and 35 d postoviposition, i.e., mean 14%, 50%, and 72%, respectively, of the incubation duration). We removed one 1 x 2-cm section of eggshell from the upper hemisphere of each removed egg, and after removal from the egg, we killed the embryo via rapid decapitation. We gently removed the extrabryonic membranes from the removed section of eggshell and divided the section approximately in half. We immediately used one of the 1-cm\(^2\) sections for the in vitro gas-exchange experiment (see below). The other sections from the early (7 d postoviposition) and late (35 d postoviposition) eggs were stored in 95% ethanol (the most superficial third of the fibrous layer), middle fibrous layer, the thickness of the calcareous crust, and the total thickness (fibrous layer + crust) of each eggshell for early and late stages of incubation. We removed one 1 x 2-cm section of eggshell from the upper hemisphere of each removed egg, and after removal from the egg, we killed the embryo via rapid decapitation. We gently removed the extrabryonic membranes from the removed section of eggshell and divided the section approximately in half. We immediately used one of the 1-cm\(^2\) sections for the in vitro gas-exchange experiment (see below). The other sections from the early (7 d postoviposition) and late (35 d postoviposition) eggs were stored in 95% ethanol (the most superficial third of the fibrous layer), middle fibrous layer, the thickness of the calcareous crust, and the total thickness (fibrous layer + crust) of each eggshell for early and late stages of incubation (n = 6). For the EDS analyses, we used a spectrometer (LINK INCA, Oxford Instruments, Abingdon, UK) connected to an SEM (JSM 6400, JEOL; Heulin et al. 2005). For each eggshell sample, we took photos of the outer surface (x 3,000) and of one or two cross sections (x 600). We estimated the thickness of each sample by averaging 15 different measurements from different sites spaced along the length of 5-10 cross sections. We determined the thickness of the fibrous layer, the thickness of the calcareous crust, and the total thickness (fibrous layer + crust) of each eggshell for early and late stages of incubation (n = 6). For the EDS analyses, we used a spectrometer (LINK INCA, Oxford Instruments, Abingdon, UK) connected to an SEM (JSM 6400, JEOL). We analyzed two or three cross sections for each eggshell and distinguished four regions: calcareous crust, outer fibrous layer (the most superficial third of the fibrous layer), middle fibrous layer, and inner fibrous layer (the deepest third of the fibrous layer). For each of these areas, we took repeated measures (7–10 specter points) and averaged them to determine each region’s atomic composition.

### In Vitro Gas-Exchange Experiment

Simultaneously with the NRM clutches described above, we incubated seven *A. childreni* clutches under LOW conditions, using a manifold system that supplied a controlled mixture of compressed N\(_2\) and outside air. This treatment mimicked the biologically relevant O\(_2\) partial pressure (P\(_\text{O}_2\)) profile of brooded *A. childreni* eggs in the absence of maternal postural adjustments (as in Stahlschmidt and DeNardo 2009b, Fig. 1). Other than the P\(_\text{O}_2\) of the supply air, NRM or LOW treatment clutches were incubated identically (i.e., at 31.5°C and supplied with near vapor-saturated air at 50 mL min\(^{-1}\)). We determined the P\(_\text{O}_2\) of each treatment’s supply air daily by using a syringe pump (model 230, Stoelting, Wood Dale, IL) to flow air samples at a controlled rate through an O\(_2\) analyzer (S 3-A, Applied Electrochemistry, Sunnyvale, CA). We converted the %O\(_2\) displayed on the analyzer to P\(_\text{O}_2\) (%O\(_2\)/100 × barometric pressure), using barometric pressure recorded daily from a gas analyzer (FC-1B, Sable Systems, Las Vegas, NV) located nearby in the lab. The P\(_\text{O}_2\) for the LOW treatment supplies was changed daily by adjusting the flow meters for N\(_2\) and outside air (Fig. 1).

To determine the effect of incubation stage on eggshell conductance and permeability, we used the 1-cm\(^2\) eggshell sections taken from the NRM clutches at 7, 24, and 35 d postoviposition as described above. On removal from the source clutch, the 1-cm\(^2\) sections were stored in a vapor-saturated container for 20–30 min and then placed into a two-cell, closed-system diffusion chamber at 31.5°C (Fig. 2). Under the conditions used, the hygrometer had a resolution of 0.04% relative humidity (RH),
Figure 2. Two-cell, closed-system diffusion chamber used to measure Antaresia childreni eggshell permeability to O₂ and H₂O vapor (K₀ and K_H₂O, respectively). To summarize, by injecting dry O₂ into the gas-sample volume of the top cell, we created steep O₂ and H₂O vapor gradients across the eggshell. The reduction of these gradients over time elucidated each eggshell's K₀ and K_H₂O. Note: the lower cell consisted of only apoxic liquid water and interfaced directly with the inner surface of the eggshell.

and the O₂ sensor had a resolution of 0.06–0.12 kPa. We used two-point calibrations for the hygrometer (0% and 100% RH) and O₂ sensor (0 and 20.7 kPa) before each trial. The lower cell consisted of a 100-mL glass Erlenmeyer flask filled entirely with a 1% Na₂SO₄ aqueous solution and submerged in a water bath maintained at 31.5°C (range 31.2°C–31.8°C; Fig. 2). Before the study, we confirmed that this concentration of Na₂SO₄ maintained an anoxic solution in a shell-less (i.e., zero-resistance) chamber for >24 h.

After placing an eggshell section into the diffusion chamber, we opened both ports on the gas-sample cell, flushed the cell with 60 mL of bottled O₂, and closed both ports. This created steep gradients for water vapor (100% RH, or 4.6 kPa) and O₂ (97.5 kPa) across the eggshell, and these gradients degraded over time. We used the following equations, modified from Wangesteen et al. (1970/1971), to calculate eggshell conductance and permeability:

\[ K = \frac{1.868V}{t_{0.5}A}, \]

\[ K = \frac{G}{A}, \]

where \( G \) is the conductance to O₂ or H₂O (cm³ s⁻¹ kPa⁻¹), \( K \) is the permeability (area-specific conductance) to O₂ or H₂O (cm³ s⁻¹ cm⁻² kPa⁻¹), \( V \) is the volume of gas-sample cell (cm³), \( t_{0.5} \) is the time required for the P₀ (or P_H₂O) in the gas-sample cell to reach 50% of the lower-cell P₀ (or P_H₂O; d), \( A \) is the area of the shell available for gas exchange (cm²), and \( T \) is the absolute temperature (K).

With this method, we simultaneously measured eggshell permeability to both H₂O vapor and O₂ while mimicking natural conditions (i.e., liquid inside/gas outside, preferred incubation temperature, and diffusive gas exchange only). The value of \( G \) is directly related to \( K \) in our study because surface area (28.3 mm²) and volume (2.73 cm³) were fixed throughout the trials. Determining the surface area of imperfect ellipsoid eggs was not feasible; thus, we do not provide results for \( G \) because we did not determine eggshell diffusive conductance of whole individual eggs, as in previous studies (reviewed in Deeming and Thompson 1991). Rather, we present results for \( K \), area-specific conductance, or permeability.

To determine the effect of developmental P₀ on eggshell conductance and permeability, we similarly processed late-stage LOW eggsells (i.e., at 72% postoviposition development) and compared their K₀ and K_H₂O with those of late-stage NRM eggshells. We used late-stage eggshells because late-stage A. childreni embryos are more sensitive than early-stage embryos to LOW conditions (Stahlschmidt and DeNardo 2008, 2009) and because the developmental microenvironment during egg brooding becomes progressively more hypoxic during incubation (Stahlschmidt and DeNardo 2008).

**In Vivo Gas-Exchange Experiments**

We used six artificially incubated A. childreni clutches and measured embryonic oxygen consumption rates (Vₒ) at 31.5°C (range 31.2°C–31.8°C) during three periods: 10–16, 36–38, and 43–45 d after oviposition (i.e., mean 26%, 76%, and 90%, respectively, of incubation duration). Closed-system respirometry was necessary to determine Vₒ at the early incubation stage, so we used it at all stages for consistency. During a trial, we kept the clutch in a 1.2-L dual-ported airtight respirometry chamber with no substrate and supplied the clutch chamber with influent air of known composition by hydrating a controlled flow of acapnic air (CDA 1112, PureGas, Broomfield, CO). We controlled flow with a mass-flow controller (Unit Instruments, Yorba Linda, CA) that we calibrated by using soap-film flow meters. After allowing the chamber to reach equilibrium (i.e., minimally a 99% turnover of chamber air; Lasiewski et al. 1966), we collected an initial 60-mL air sample (T_initial) from the clutch chamber and stopped the influx air. We then sealed the clutch chamber for a recorded duration (64 ± 8 min) and collected a final 60-mL air sample (T_final) from the chamber, which created negative pressure within the chamber for only a brief period of time. We then used a syringe pump (Stoelting model 230) to pass the dried T_initial and T_final samples at a controlled rate through an O₂ analyzer (S-3A) that we had calibrated with dried outside air at the same controlled flow rate <30 min before analyses. We used equations (5), (6), and (11) in Vleck (1987) to determine clutch Vₒ₂, and we divided clutch Vₒ₂ by clutch size to determine mean egg Vₒ₂.

Less than 2 h after the Vₒ trial, we measured clutch water loss rate (Mₜ₀), using flow-through hygrometry at 31.5°C, by combining dry, acapnic air (CDA 1112, PureGas) with water-vapor-saturated air (produced by bubbling dry air through a water-filled hydrating column) in a feedback-controlled system. Resulting influent air was humidified to 22.6 g m⁻³ absolute humidity (69% RH) and maintained at a flow rate of 560 mL.
580  Z. R. Stahlschmidt, B. Heulin, and D. F. DeNardo

We passed air exiting the test chamber (effluent air) through a hygrometer (RH200, Sable Systems) and then dried it with anhydrous CaSO\(_4\), before flowing it through a CO\(_2\) analyzer (LI-6252, Li-Cor Biosciences, Lincoln, NE) and an O\(_2\) analyzer (FC-1B, Sable Systems). We calibrated all equipment before experimentation. During trials, we recorded O\(_2\) concentration, CO\(_2\) concentration, and dew point of effluent air every minute, using a data logger (23X, Campbell Scientific Instruments, Logan, UT), and we used equations (1)-(7) in Walsberg and Hoffman (2006) to determine clutch MH\(_{2,0}\). We calculated individual egg MH\(_{2,0}\) by dividing clutch MH\(_{2,0}\) by clutch size.

Statistical Analyses

Data met the appropriate assumption of parametric statistics or were transformed as necessary, and we analyzed data with SPSS Statistics (ver. 15.0, SPSS, Chicago). We determined experimentwise two-tailed significance at \( \alpha < 0.05 \) for all tests and performed power \((1 - \beta)\) analyses for nonsignificant results. We used two-sample \( t \)-tests to determine the effect of treatment among individuals (e.g., comparing shell permeability of eggs reared in NRM and LOW conditions). To determine within-individual effects (e.g., the effect of incubation stage on eggshell permeability), we used repeated-measures ANOVA (rm-ANOVA) tests. In rmANOVA analyses with significant sphericity, we used \( \chi^2 \) tests with \( \epsilon \)-adjusted Greenhouse-Geisser or Huynh-Feldt tests. For post hoc analyses, we used Bonferroni-corrected paired \( t \)-tests to correct for experimentwise Type I error rate. All values are given as mean \( \pm \) SEM.

Results

Structural and Atomic Analyses

Using SEM, we showed that *Antaresia childreni* eggshells are primarily made up of a fibrous layer, similar to eggshells of other squamates (Fig. 3; Table 1). Further, we demonstrated that the fibrous layer and total eggshell thickness decreased as incubation progressed (Table 1). Because the eggs did not increase in mass throughout incubation (Table 2), we assume that this reduction in thickness was not simply the result of shell stretching because of swelling. Eggshell thinning was functionally significant because individual values were correlated with both Ko\(_2\) and KH\(_{2,0}\) for early (Ko\(_2\): \( r_t = 0.88 \); KH\(_{2,0}\): \( r_t = 8.14, P = 0.046, r^2 = 0.67 \)) and late (Ko\(_2\): \( r_t = 25.00, P = 0.007, r^2 = 0.86 \); KH\(_{2,0}\): \( r_t = 8.62, P = 0.043, r^2 = 0.68 \)) stages of incubation (Fig. 4). Using EDS, we characterized the composition of 10 elements in four eggshell layers (Table 3). Although such data violate the assumption of independence, we determined a change only in the percentage of magnesium in the calcareous crust during incubation (\( t_t = -3.6, P = 0.016; \) Table 3). Not unexpectedly, we demonstrated differences in several elements among eggshell layers (e.g., the calcareous layer had higher percentage of calcium, while the fibrous layers had higher percentage of carbon; Table 3).

In Vitro Gas-Exchange Experiments

We determined that eggshell K increased with incubation for both O\(_2\) and H\(_2\)O vapor during NRM conditions (Table 2). With post hoc Bonferroni analyses, we demonstrated a significant difference due to incubation stage for K; early-stage K was less than late-stage K (both \( P < 0.015 \)), but middle-stage K was not significantly different from either early- or late-stage values.

Regarding the plasticity of eggshell permeability to hypoxia, we did not detect a significant effect of developmental Po\(_2\) on eggshell Ko\(_2\) (NRM: \( 8.6 \times 10^{-5} \pm 3.0 \times 10^{-6} \) cm\(^2\) d\(^{-1}\) cm\(^{-1}\) kPa\(^{-1}\); LOW: \( 8.6 \times 10^{-5} \pm 3.3 \times 10^{-6} \) cm\(^2\) d\(^{-1}\) cm\(^{-1}\) kPa\(^{-1}\); \( t_t = -0.66, P = 0.95, 1 - \beta = 0.95 \)) or KH\(_{2,0}\) (NRM: \( 206.2 \pm 5.7 \) cm\(^2\) d\(^{-1}\) cm\(^{-1}\) kPa\(^{-1}\); LOW: \( 210.9 \pm 4.4 \) cm\(^2\) d\(^{-1}\) cm\(^{-1}\) kPa\(^{-1}\); \( t_t = -0.66, P = 0.52, 1 - \beta = 0.60 \)). Hatching success for the remainder of the clutches from which the eggs used in this experiment were taken was not significantly different between NRM (85% \( \pm 4\% \)) and LOW (92% \( \pm 3\% \)) clutches (\( t_t = -1.4, P = 0.18, 1 - \beta = 0.53 \)).

![Figure 3. Cross-section scanning electron microgram of Antaresia childreni eggshells from the same clutch during early (16% of incubation duration) and late (74% of incubation duration) stages of incubation. CC = calcareous crust, OF = outer fibrous layer, MF = middle fibrous layer, and IF = inner fibrous layer.](image-url)
Table 1: Total and compositional thickness of Antaresia childreni eggshells during early (mean = 15% of incubation duration) and late (mean = 72% of incubation duration) stages of incubation (n = 6)

<table>
<thead>
<tr>
<th>Incubation Stage</th>
<th>Calcareous Layer Thickness (μm)</th>
<th>Fibrous Layer Thickness (μm)</th>
<th>Total Thickness (μm)</th>
<th>Proportion of Fibrous Layer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>5 ± 0</td>
<td>84 ± 4*</td>
<td>89 ± 4*</td>
<td>94.3 ± .4</td>
</tr>
<tr>
<td>Late</td>
<td>5 ± 0</td>
<td>73 ± 4</td>
<td>77 ± 4</td>
<td>93.8 ± .4</td>
</tr>
</tbody>
</table>

*a Significantly greater than that at late stage.

**In Vivo Gas-Exchange Experiments**

Hatching success for the clutches used in this experiment was similar to that measured for the clutches used in the in vitro experiment and that of previous A. childreni egg-brooding studies (80% ± 8%; Lourdais et al. 2007; Stahlschmidt and DeNardo 2008). We detected increased clutch VO₂ and egg VO₂ as embryos grew and developed (Table 2). Further, we determined that mean egg mass decreased significantly with incubation (Table 2), which suggests that eggshell surface was either diminishing or, at most, static throughout incubation. Thus, an increase in clutch MTH₉ and egg MTH₉ with incubation (Table 2) was not simply the result of an increase in surface area available for gas exchange or a reduced shell thickness because of swelling. Further, the metabolic heat production of even late-stage A. childreni embryos is minuscule (i.e., assuming that 1 mL of O₂ consumed is equivalent to 20 J, as in Brouwer 1957, late-stage A. childreni embryos produced only 0.010 more watts than early-stage embryos). Thus, embryonic heat production, in the presence of the 560–mL min⁻¹ air flow through the chamber, would not significantly affect temperature or internal water-vapor pressure during MTH₉ measurements. With post hoc Bonferroni analyses, we demonstrated significant differences due to incubation stage for clutch VO₂, egg VO₂, clutch MTH₉, and egg MTH₉ (i.e., early < middle < late; all P < 0.015). Further, mean eggshell KH₉O was strongly related to mean egg MTH₉ over incubation (r² = 0.99), although the data were taken during different experiments.

**Discussion**

We have demonstrated structural and functional changes in python eggshells during incubation that are consistent with our first hypothesis, that python eggshells change structurally over the course of embryonic development to increase permeability. As the embryos’ respiratory needs increased, eggshells exhibited a reduced fibrous layer (Table 1). This reduction in shell thickness in turn led to increased Kₒ and KH₉O as incubation progressed (Table 2; Fig. 4). Because python eggs typically lose or at most do not gain mass (i.e., water) during maternal incubation (Stahlschmidt and DeNardo 2008; Stahlschmidt et al. 2008), increased eggshell permeability obligated an increase in egg water loss. Thus, increasing permeability entailed both costs (increased water loss) and benefits (increased respiratory gas exchange) to developing embryos.

This trade-off between respiratory gas exchange and water balance may be adaptive, because biologically relevant levels of developmental hypoxia lead to smaller, weaker, and slower Antaresia childreni offspring (Stahlschmidt and DeNardo 2008, 2009b). Hypoxia in other species can decrease embryonic growth rate (Alligator mississippiensis: Crossley and Altimiras 2005; Salmo trutta: Roussel 2007), reduce hatching mass (Crossley and Altimiras 2005), delay the development of thermogenesis (Gallus gallus: Azzam et al. 2007), reduce predator avoidance ability of juveniles (Roussel 2007), and impair sexual development (Danio rerio: Shang et al. 2006). Given these deleterious effects, many species have acquired adaptations to enhance gas flux across the eggshell as embryonic metabolism increases. For example, bird and reptile eggs develop a highly vascularized choioallantoic membrane that increases the surface area available for gas exchange (Andrews 2004), while embryonic incorporation of shell-derived calcium deposits reduces shell thickness (Booth and Seymour 1987). Further, as incubation progresses, liquid is removed from the eggshell pores of A. mississippiensis because of drying. Because the diffusion coefficient of O₂ through gas is several orders of magnitude greater than that through liquid, eggshells with dry pores exhibit increased diffusive conductance and thus increased flux across the eggshell (Kern and Ferguson 1997). Also, as embryos grow, their natural increase in metabolic rate serves to increase the O₂ concentration gradient (Seymour 1985). Thus, eggs can mediate the respiration-hydration trade-off in a number of ways by promoting respiratory gas flux as incubation progresses.

Although they both serve as mediating barriers, archosaur (i.e., birds and crocodilians) and squamate eggshells exhibit marked morphological differences. Bird eggshells are much thicker (365 μm) and are predominately made up of a calcaceous outer layer (82% of total thickness; Paganelli 1991). Alternatively, squamate eggs are thinner and are largely composed of a fibrous layer (Lacerta vivipara: 50–70 μm total, 87%–89% fibrous layer; A. childreni: 67–99 μm, 92%–96% fibrous layer; Heulin et al. 2002; Table 1). This difference is functionally significant because colubrid snake eggshells contribute only 23%–28% of hatching calcium requirements, with the remainder being supplied by yolk (Packard and Packard 1984; Stewart et al. 2004). Conversely, bird eggsheets meet 62%–92% of hatching calcium requirements (Packard and Packard 1984). Heavy deposits of calcium in the shell drastically reduce permeability and allow birds to use a broad range of nest sites (Paganelli 1991). Alternatively, the high eggshell permeability of squamate eggs may occur concurrently with longer durations...
Table 2: *Antaresia childreni* clutch, egg, and eggshell characteristics at multiple stages of development for in vivo (*n* = 7) and in vitro (*n* = 6) experiments (mean ± SEM)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Early</th>
<th>Middle</th>
<th>Late</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo experiment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoviposition development (%)</td>
<td>25.6 ± 2.1</td>
<td>76.2 ± 1.7</td>
<td>89.9 ± 1.9</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Clutch size</td>
<td>10.7 ± .3</td>
<td>10.5 ± .4</td>
<td>10.4 ± .4</td>
<td>1.00</td>
<td>.363</td>
</tr>
<tr>
<td>Mean egg mass (g)</td>
<td>12.9 ± .6</td>
<td>11.9 ± .7</td>
<td>11.5 ± .6</td>
<td>9.07</td>
<td>.012</td>
</tr>
<tr>
<td>Clutch VO₂ (mL h⁻¹)</td>
<td>5.9 ± .3</td>
<td>16.3 ± 1.6</td>
<td>23.7 ± 2.1</td>
<td>57.6</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Egg VO₂ (mL h⁻¹ egg⁻¹)</td>
<td>.56 ± .03</td>
<td>1.58 ± .14</td>
<td>2.44 ± .10</td>
<td>192</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Clutch Mn₂O (mg h⁻¹)</td>
<td>241.6 ± 14.1</td>
<td>264.3 ± 13.2</td>
<td>313.9 ± 14.0</td>
<td>27.6</td>
<td>.001</td>
</tr>
<tr>
<td>Egg Mn₂O (mg h⁻¹ egg⁻¹)</td>
<td>22.7 ± 1.2</td>
<td>25.3 ± 1.4</td>
<td>29.5 ± 1.5</td>
<td>36.6</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>In vitro experiment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoviposition development (%)</td>
<td>14.5 ± .2</td>
<td>50.0 ± .7</td>
<td>72.3 ± 1.0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Sampled egg mass (g)</td>
<td>13.0 ± .4</td>
<td>13.7 ± .5</td>
<td>13.2 ± .6</td>
<td>2.32</td>
<td>.149</td>
</tr>
<tr>
<td>Eggshell O₂ permeability (Ko₂; cm⁻¹ d⁻¹ cm⁻³ kPa⁻¹)</td>
<td>6.6 × 10⁻⁸ ± 2 × 10⁻⁶</td>
<td>7.5 × 10⁻⁵ ± 4 × 10⁻⁴</td>
<td>8.6 × 10⁻³ ± 3 × 10⁻⁶</td>
<td>11.9</td>
<td>.009</td>
</tr>
<tr>
<td>Eggshell H₂O permeability (Kh₂O; cm⁻¹ d⁻¹ cm⁻³ kPa⁻¹)</td>
<td>168.8 ± 6.2</td>
<td>184.3 ± 4.3</td>
<td>206.2 ± 7.5</td>
<td>17.6</td>
<td>.008</td>
</tr>
</tbody>
</table>
of egg retention and before the evolution of viviparity (Packard et al. 1977).

Comparatively, *A. childreni* eggshell $K_{H_2O}$ (169-206 cm$^{-1}$ d$^{-1}$ cm$^{-2}$ kPa$^{-1}$) fits into the range of the reported values for similarly sized parchment-shelled eggs of other snakes (117-227 mg d$^{-1}$ cm$^{-2}$ kPa$^{-1}$; reviewed in Deeming and Thompson 1991). Because of different media (i.e., $O_2$ diffused into liquid $H_2O$ while $H_2O$ vapor diffused into gas), we measured drastic differences between $K_{O_2}$ and $K_{H_2O}$ at each incubation stage (Table 1). Although our eggshell $K_{O_2}$ measurements were ecologically relevant and useful in distinguishing shifts in $K_{O_2}$ over time, they cannot be readily compared with eggshell $K_{O_2}$ values acquired with more traditional methods (e.g., $O_2$ diffusing into gas; reviewed in Deeming and Thompson 1991). Further, the proportion of *A. childreni* eggshell $K_{H_2O}$ to $K_{O_2}$ (mean = 2.5 X $10^{-3}$) is 230 times the proportion of the $H_2O$ vapor diffusion coefficient to the $O_2$ diffusion coefficient under similar conditions (1.1 X $10^{-3}$; Montgomery 1947; Wilke and Chang 1955). Thus, as reported in other reptiles and some birds (Deeming and Thompson 1991; Paganelli 1991), $H_2O$ and $O_2$ permeabilities are not coupled in the parchment-shelled eggs of pythons. The mechanism of this phenomenon at the proximate level is not fully understood, but it may ultimately be related to reptiles’ relatively humid nest environments and low embryonic metabolic rates (Deeming and Thompson 1991).

To the best of our knowledge, we provide the first evidence of eggshell thinning independent of egg swelling in squamate reptiles. Other squamate eggs absorb water from surrounding substrate throughout incubation (Belinsky et al. 2004). The resultant swelling serves to both increase the surface area available for gas exchange and reduce the thickness of the eggshell. Our results suggest that pythons and other squamates seem to accomplish the same goal (i.e., eggshell thinning to reduce late-stage embryonic respiratory constraints) through different means. That is, pythons reduce the thickness of the eggshell’s fibrous layer independent of egg swelling, while other squamate eggshells stretch because of swelling from water influx. Like other pythons, *A. childreni* oviposit at the end of a prolonged dry season (Wilson and Swan 2003). Thus, in contrast to many other squamates, pythons may not have access to a nest site with moist substrate, which in turn precludes the eggs from reducing eggshell thickness because of swelling with water. The ability to reduce eggshell thickness independent of extrinsic moisture, combined with egg-brooding behavior, may confer certain advantages to pythons by expanding the temporal and spatial flexibility of reproduction.

The mechanism for eggshell thinning in pythons is less straightforward. Recent research suggests that osteopontin, an eggshell matrix glycoprotein, may regulate eggshell growth rate and calcium flux in bird eggs (Chien et al. 2009). However, squamate eggshells are minimally calcified, and we did not detect significant shifts in thickness or atomic composition in the calcareous crusts of *A. childreni* eggs. Nonetheless, another eggshell matrix compound may similarly regulate the catabolism of the fibrous layer components (e.g., keratin, collagen, or elastin fibers) of python eggshells.

To eliminate the potential confounding effects of intraclutch variation in eggshell characteristics, the best experimental approach would have been to measure traits on the same eggs at two time points. Unfortunately, certain experimental methods (e.g., SEM morphological assessment and in vitro assessment of conductance) require egg sacrifice; thus, repeated measures are not possible. Rather, we chose to pair eggs from the same clutch because data on *A. childreni* offspring characteristics demonstrate that intraclutch variation is much less than interclutch variation (Stahlschmidt and DeNardo 2009b; Z. R. Stahlschmidt and D. F. DeNardo, unpublished data). Not only was the difference between the time points statistically signif-
Table 3: Atomic composition of *Antaresia childreni* eggshells during early (mean = 15% of incubation duration) and late (mean = 72% of incubation duration) stages of incubation in four layers (n = 6)

<table>
<thead>
<tr>
<th>Element</th>
<th>Calcareous Layer</th>
<th>Outer Fibrous Layer</th>
<th>Middle Fibrous Layer</th>
<th>Inner Fibrous Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early</td>
<td>Late</td>
<td>Early</td>
<td>Late</td>
</tr>
<tr>
<td>Carbon</td>
<td>49.66 ± 1.46</td>
<td>46.58 ± 1.67</td>
<td>74.21 ± 0.95</td>
<td>71.65 ± 2.46</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>6.78 ± 1.12</td>
<td>5.05 ± 0.77</td>
<td>13.04 ± 0.43</td>
<td>13.03 ± 1.22</td>
</tr>
<tr>
<td>Oxygen</td>
<td>32.02 ± 1.41</td>
<td>34.77 ± 1.64</td>
<td>10.45 ± 0.61</td>
<td>12.39 ± 1.03</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.11 ± 0.04</td>
<td>0.04 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.23 ± 0.02</td>
<td>0.30 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.03 ± 0.10</td>
<td>0.03 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.35 ± 0.03</td>
<td>0.39 ± 0.08</td>
<td>1.52 ± 0.34</td>
<td>1.50 ± 0.35</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.10 ± 0.04</td>
<td>0.07 ± 0.02</td>
<td>0.09 ± 0.04</td>
<td>0.12 ± 0.04</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.05 ± 0.02</td>
<td>0.03 ± 0.00</td>
<td>0.01 ± 0.00</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Calcium</td>
<td>10.67 ± 1.21</td>
<td>12.75 ± 1.19</td>
<td>0.60 ± 0.41</td>
<td>1.20 ± 0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.21 ± 0.08</td>
<td>0.27 ± 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.28 ± 0.14</td>
<td>0.23 ± 0.06</td>
</tr>
</tbody>
</table>

* Significantly different among layers at early developmental stage.
* Significantly different among layers at late developmental stage.
* Significantly different from the late stage in same layer.

icant, but all paired samples (i.e., an early-stage egg compared with a late-stage egg from the same clutch) showed the same directional effect: thinner shell and higher conductance during the latter stage of development. Thus, presenting the results of these three experiments in one article ensures that the conclusions on the effects of time on egg shell characteristics are well supported as an accurate assessment of a biological phenomenon and not merely statistical aberration.

Our results do not support our second hypothesis, that python eggshells exhibit functional plasticity in response to a hypoxic environment, because eggshell permeability was non-responsive to the level of O₂ in the incubation environment. This result suggests that eggshell thinning and egg-brooding behavioral adjustments may have coevolved in pythons. Postural adjustments may partially alleviate constraints on early-stage embryonic respiration, while eggshell thinning may alleviate late-stage constraints. Increased permeability associated with the thinning of the eggshell facilitates greater O₂ diffusion. Thus, females need not alter the frequency of their postural adjustments, thus preserving egg water balance late in incubation. Other examples of synergistic adaptations to parental care exist. For instance, parental birds often adjust food provisioning to their chicks on the basis of specific chick begging behaviors (reviewed in Smiseth et al. 2008). This coevolution serves to enhance chick energy balance, whereas the coevolution of python egg brooding and eggshell thinning may serve to preserve water balance throughout incubation.

Through the use of several techniques, we have demonstrated that *A. childreni* eggshells contribute to balancing respiration and hydration demands throughout embryonic development but do not exhibit functional plasticity in response to chronic hypoxia. Future studies should further examine the proposed hypotheses in an ecological context. For example, the respiratory microenvironment of wild python nests is unknown and would prove valuable in quantifying the proposed respiration-hydration trade-off. Also, our hypotheses should be tested in other parchment-shelled systems (i.e., other squamates) as well as in pliable-shelled (i.e., some turtles) and rigid-shelled (i.e., some turtles, crocodilians, gekkonine lizards) systems. Finally, the regulatory mechanism of eggshell thinning independent of egg swelling should be further examined. Such studies would continue to fill a large gap in our current knowledge of amniote embryology, particularly the proximate mechanisms and constraints to adaptation.

**Acknowledgments**

We thank Glenn Walsberg, Ty Hoffman, and members of Jon Harrison's lab for technical support and Ernest Nigro for animal husbandry support. We are grateful to the engineers of the Centre de Microscopic Electronique à Balayage et Microanalyse (CMEBA) at Rennes University for their help in SEM and EDS analyses. We also thank the National Science Foundation (grant IOS-0543979 to D.F.D.) and the Graduate and Professional Students' Association at Arizona State University for financial support. We further appreciate Glenn Walsberg, Kevin McGraw, and two anonymous reviewers for comments on the manuscript. Finally, we thank Olivier Lourdais for mediating transportation logistics.

**Literature Cited**


