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A B S T R A C T   

Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial 
ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with 
climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly un
derstood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may 
exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF 
exposure in the variable field cricket (Gryllus lineaticeps) during two life stages—nymphal development and 
adulthood—and examined key animal traits, such as developmental rate, body size, food consumption, repro
ductive investment, and lifespan. A thermal environment simulating future climate warming obligated several 
costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, 
adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults 
reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context- 
dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult 
exposure relative to exposure during development. There was evidence of additive costs of warming and GBF 
exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did 
not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs 
to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in 
commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and 
our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that 
plays critical roles in terrestrial ecosystems.   

1. Introduction 

Glyphosate (GLY) is the most used herbicide worldwide, and its 
application has skyrocketed after being commercialized in the 
1970s—globally, GLY use has increased 15-fold since the mid-1990s, 
and nearly 1 million tons of GLY are now used each year (Benbrook, 
2016; Maggi et al., 2019, 2020). An estimated 2 million tons of GLY have 
been applied to terrestrial ecosystems in the United States alone, and 
there are growing concerns about the bystander effects of GLY to 
non-target organisms (Benbrook, 2016). Glyphosate kills plants by 
inhibiting the shikimate pathway, which biosynthesizes essential aro
matic amino acids and is not present in animals (Gill et al., 2017, 2018). 
Yet, recent work indicates that exposure to GLY-based formulations 
(GBFs; a. k.a., glyphosate-based herbicides or GBHs) may impact 

animals, including humans, likely due to adjuvants in GBFs (e.g., pro
prietary surfactants designed to improve the absorption of GLY by 
plants) (Gill et al., 2018; Richmond 2018; Battisti et al., 2021; Gandhi 
et al., 2021; Kabat et al., 2021). 

Exposure to chemical pollution is not the only potential stressor 
animals encounter. Global warming is expected to accelerate, and 
warming is costly to many facets of animal biology—it may reduce body 
size, contract geographical ranges, and lead to phenological mismatch
ing (Parmesan, 2006; Yang and Rudolf, 2010; Gardner et al., 2011; 
Kharouba et al., 2018; IPCC et al., 2021). Animals exposed to both 
pesticides and warming simultaneously may incur additive costs from 
these multiple stressors. Alternatively, the costs of multiple stressors 
may be non-additive or interactive (e.g., antagonistic or synergistic: 
Crain et al., 2008; Todgham and Stillman, 2013; Kaunisto et al., 2016). 
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For example, temperature and insecticide exposure tend to have syn
ergistic effects (i.e., entail interactive, non-additive effects) on insects 
(Kaunisto et al., 2016). Likewise, warming and GLY/GBFs modulate the 
effects of one another in the physiological and behavioral responses of 
aquatic animals (Baier et al., 2016; Gandhi and Cecala, 2016; Silva et al., 
2020; Fadhlaoui and Lavoie, 2021; Parlapiano et al., 2021). However, 
the combined effects of warming and GLY/GBFs on terrestrial animals 
are less understood (Stahlschmidt and Vo, 2022). 

On their journey from birth to death, animals progress through 
several life stages (e.g., embryonic, larval, and juvenile stages) that may 
exhibit different sensitivities to stressors (Kingsolver et al., 2011; 
Tangwancharoen and Burton, 2014; Truebano et al., 2018; Shekh et al., 
2019; Leung and McAfee, 2020). Therefore, we factorially manipulated 
temperature and GLY/GBF exposure in the variable field cricket (Gryllus 
lineaticeps) during two life stages (nymphal development and adulthood) 
because previous work indicates crickets are sensitive to insecticides (e. 
g., neonicotinoids, phenylpyrazoles, pyrethroids, and organophos
phates: Cummings et al., 2006; Thompson and Brandenburg, 2006; 
Neuman-Lee et al., 2013; Maliszewska et al., 2018), but crickets’ 
sensitivity to herbicides are not understood. We examined key animal 
traits, such as developmental rate, body size, food consumption, repro
ductive investment, and lifespan. We addressed four questions:  

(1) Do GLY/GBFs and warming impose additive or non-additive 
costs? Here, we predict a tendency for non-additive, interactive 
costs given previous work across taxa (e.g., Crain et al., 2008), as 
well as in Gryllus, in particular (Padda et al., 2021; Padda and 
Stahlschmidt, 2022).  

(2) Do the effects of either potential stressor vary due to life stage? 
Here, we predict exposure during development will have a 
greater effect than exposure during adulthood because early life 
stages tend to be relatively sensitive to abiotic stress (Grosell 
et al., 2002; Verween et al., 2007; Pineda et al., 2012; Miller 
et al., 2013; Mohammed, 2013; but see Tangwancharoen and 
Burton, 2014; Shekh et al., 2019).  

(3) Do the effects of either potential stressor vary due to the type of 
trait (i.e., some traits may be more sensitive to GLY/GBFs than 
other traits)? Here, we predict warming to reduce developmental 
duration and body size as in other taxa (reviewed in Angilletta, 
2009), but we have no clear a priori predictions regarding the 
trait-specific sensitivity of GLY/GBF exposure given their broad 
range of effects in animals (reviewed in Gill et al., 2018).  

(4) Are the costs of GBFs due to GLY, or to co-formulants? Here, we 
predict costs of exposure to GBF, but not GLY alone, given the 
harmful effects of surfactant co-formulants (Tsui and Chu, 2003; 
Howe et al., 2004; reviewed in Gill et al., 2018). 

The threat of multiple stressors is increasing for animals (McRae 
et al., 2008; Nelson et al., 2009; Rohr et al., 2011; Rohr and Palmer, 
2013; Kaunisto et al., 2016), and our study will be the first to integrate 
the effects of global warming and a common herbicide across the life 
stages of a terrestrial animal. 

2. Materials and methods 

2.1. Study system 

The variable field cricket, Gryllus lineaticeps, is predominately found 
in California, U.S. (Weissman and Gray, 2019) where GLY is applied to 
more land area than any other pesticide (California Department of 
Pesticide Regulation, 2018). We used G. lineaticeps from a long-term 
colony that we subsidized annually with progeny from females 
collected from a natural population (Sedgwick Reserve, Santa Ynez, CA, 
U.S.). Gryllus lineaticeps is wing-dimorphic, and we maintained the col
ony at even sex and morph ratios in standard conditions (14:10 light: 
dark cycle with ad libitum access to water, commercial dry cat food, and 

cardboard egg cartons for shelter) at 28 ± 1 ◦C. In these conditions, 
G. lineaticeps eggs incubate for ~11 d before hatchling nymphs emerge, 
and nymphs develop for ~50 d before molting into winged adults that 
begin mating with ~5 d, and females begin ovipositing immediately 
thereafter. 

We conducted two experiments (see below), and we maintained 
crickets in standard conditions for both experiments. For Experiment 1, 
we transferred each cohort of hatchlings (n = 20 per cohort) from the 
colony to a translucent 15 L plastic container within 2 d of hatching (n =
42 cohorts; n = 820 hatchlings total). For Experiment 2, we transferred 
each newly emerged adult from the colony to a translucent 1.9 L plastic 
container within 1 d post-adult molt (n = 276 adults total). We only used 
short-winged (SW; flight-incapable) morphs for Experiment 2 because 
the SW morph is the dominant morph at Sedgwick Reserve (L.A. Treidel, 
pers. comm.). 

2.2. Experiment 1: Effects of warming and GLY/GBF during development 

We used a 3 × 2 factorial design to study the independent and 
interactive effects of water treatment and temperature on the success 
and duration of development, and adult phenotype (e.g., body size, and 
investment into flight capacity and reproduction). We manipulated 
exposure to GLY or GBF by providing nymphal crickets with water 
bottles filled with one of three solutions: tap water only (control, CON), 
glyphosate (GLY; 5 mg/L of H2O, the concentration of GLY that has been 
used in other insect studies and is based on field-relevant concentra
tions: reviewed in Herbert et al., 2014; Motta et al., 2018), and GBF 
(Roundup® Super Concentrate diluted to 5 mg GLY/L of H2O). We 
changed water bottles weekly, and we included both GLY and GBF to 
disentangle the effects of GLY and non-GLY components (i.e., pro
prietary surfactants) on measured variables. Glyphosate exhibits very 
low rates of degradation in tap water in the absence of UV light exposure 
(e.g., at least 90% of glyphosate remains after 120 days: Yadav et al., 
2017), and its degradation is minimally affected by temperature and is 
instead largely driven by microbes in natural conditions (Roberts, 1998; 
Tomlin, 2006; Mercurio et al., 2014). Because there was likely limited 
microbial activity and UV radiation in our study using chlorinated tap 
water, GLY- and GBF-treated crickets likely experienced significant 
exposure to these chemicals. We performed a pilot study in adult 
G. lineaticeps (n = 27) maintained in standard conditions. Based on these 
crickets’ consumption of GBF-treated water (92 ml per day on average), 
we estimate that each GLY/GBF-treated cricket consumed approxi
mately 0.5 μg of GLY each day. 

We also manipulated crickets’ thermal environments. We main
tained half of the crickets in an incubator (model I-36, Percival Scien
tific, Inc., Perry, IA, U.S.) exhibiting a thermal cycle that changed 
temperature hourly and ranged from 18 ◦C to 38 ◦C each day (Fig. S1). 
This control temperature treatment averaged 28 ◦C (as in standard 
colony conditions; see above), but its daily variation approximated the 
thermal fluctuations of microhabitats used by adult G. lineaticeps in the 
field (Sedgwick Reserve, Santa Barbara County, CA, USA: Fig. S1). We 
maintained the remaining crickets in an incubator exhibiting a thermal 
cycle that changed temperature hourly and ranged from 23 ◦C to 42 ◦C 
each day (Fig. S1). The maximum temperature in the warming treatment 
(42 ◦C) did not exceed the critical thermal maximum of adult 
G. lineaticeps (50 ◦C; ZRS unpublished). Thus, the warming temperature 
treatment was acutely sublethal and exhibited the same thermal varia
tion as the control temperature treatment, but it was 4 ◦C warmer to 
estimate the predicted increase in temperature at Sedgwick Reserve in 
2100 (IPCC et al., 2021). 

We checked crickets daily, and we transferred newly emerged adults 
into individual deli cups and returned crickets to their water and tem
perature treatment conditions. After 5 d, we determined wing 
morphology (i.e., SW or long-winged [LW]) and body mass, before 
killing and storing each cricket at − 20 ◦C. To determine investment into 
flight capacity, we later dissected crickets to score their flight 
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musculature [dorsolongitudinal muscles (DLM)] from 0 (DLM absent) to 
1 (white, histolyzed and non-functional DLM) to 2 (pink and functional 
DLM) (King et al., 2011; Glass and Stahlschmidt, 2019; Padda et al., 
2021). We removed each female’s ovaries and dried them to a constant 
mass to determine reproductive investment because ovary mass at this 
age strongly correlates with total fecundity in Gryllus (Roff, 1994). Last, 
we determined the length of both femurs for each cricket to determine 
body size (μ) and bilateral asymmetry (coefficient of variation (%); 100 
× (σ/μ)), the latter of which is an indicator of stress (reviewed in Gra
ham et al., 2010). 

2.3. Experiment 2: Effects of warming and GLY/GBF during adulthood 

To study the independent and interactive effects of water treatment 
and temperature on adult lifespan, food intake, and food conversion 
efficiency, we first weighed each cricket and then added pre-weighed 
dry commercial cat to each cricket’s container. We manipulated expo
sure to GLY/GBF and temperature using the 3 × 2 factorial design 
described above. Daily, we checked for mortality to determine lifespan. 
We paired males and females for 24-h periods to facilitate mating en
counters at 7, 14, 21, and 28 days of adulthood. We ensured that mating 
occurred between age-matched pairs of crickets in the same water- 
temperature treatment groups (e.g., a female in the CON-warming 
treatment group only mated with CON-warming males). In cases of 
uneven sex ratios, we matched one male with two females (or vice versa). 
We tried to ensure that each cricket only encountered >1 mating partner 
during a given mating encounter up to one time in its life, and that each 
cricket was not mated to the same cricket more than once. We returned 
each cricket to its individual housing after mating. 

Weekly, we weighed each cricket to determine changes in body mass. 
We also determined food intake between mating events each week 
because other herbicides can reduce food intake in insects (Ja et al., 
2007), and other traits (e.g., sex or lifespan) may also be associated with 
the rate of food intake. Female Gryllus crickets rapidly increase body and 
gonad mass during the first week of adulthood, and the amount of body 
mass gained (i.e., growth rate) during early adulthood is strongly 
correlated with reproductive investment in female G. lineaticeps 
(Stahlschmidt et al. unpublished; reviewed in Zera, 2005). Therefore, we 
determined whether treatments affected growth rate, as well as the 
ability of crickets to convert food mass into body tissue (and, thus, 
reproductive tissue for 1 week old female adults) by estimating ingested 
food conversion efficiency (body mass gain [mg]/total food ingested 
[mg] sensu Mole and Zera, 1993, 1994). 

2.4. Statistical analyses 

We tested data for normality, natural logarithm-transformed data 
when necessary, and analyzed using SPSS (v.26 IBM Corp., Armonk, 
NY). We determined two-tailed significance at α = 0.05. For Experiment 
1, we used several general linear mixed models to examine the inde
pendent and interactive effects of treatments (water treatment and 
temperature) and sex on developmental duration, adult body mass and 
size, bilateral asymmetry, and ovary mass where we included cohort 
identity (n = 42) as a random effect in each model. We also performed 
an ordinal logistic generalized linear mixed model on the categorical 
DLM scores (scored from 0 to 2, see above) and treatments. To account 
for the independent effect of body size, the ovary mass and DLM score 
models included mean femur length as a covariate. Similarly, we used 
binary logistic generalized linear models on data from each cricket to 
determine the effects of treatment on survivorship (0: did not survive 
treatment; 1: survived treatment) and on wing morphology (SW or LW). 
For Experiment 2, we used several general linear models to examine the 
independent and interactive effects of treatments (GLY/GBF and tem
perature) and sex on adult lifespan, average daily food intake, and the 
growth rate and the food conversion efficiency during early adulthood. 
We included initial body mass as a covariate in all Experiment 2 models, 

with the exception of the conversion efficiency model because initial 
body mass was used to determine conversion efficiency. We further 
included body mass gained during early adulthood and average daily 
food intake as covariates in the lifespan model to examine the sensitivity 
of longevity to growth rate and feeding rate, respectively, and because 
these two covariates did not exhibit strong multicollinearity (variance 
inflation factor = 1.97). All models tested for interactions between and 
among treatments and sex. Significant results are reported below, and 
full results are reported in Tables S1-S12. When water treatment inde
pendently affected a dependent variable, we used pairwise post-hoc 
analyses to determine differences between water treatments, and we 
controlled the Type I error rate associated with multiple comparisons by 
using the Holm-Bonferroni method. 

Fig. 1. Effects of water treatment (tap water [control], glyphosate [GLY], or 
GLY-based formulation [GBF]) and temperature experienced during develop
ment on a.) survival to adulthood, b.) developmental duration, and c.) body size 
(femur length) in G. lineaticeps. For full results, see Tables S1, S2, and S4. Values 
are displayed as mean ± s.e.m. 
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3. Results 

3.1. Experiment 1: Effects of warming and GLY/GBF during development 

Warming during development reduced survival to adulthood, and 
both warming and GBF exposure reduced developmental duration 
(Fig. 1a and b; Tables S1 and S2). Adult body mass and size were reduced 
due to warming (Fig. 1c; Table S3). Warming had a greater effect on 
body mass in females (temperature × sex effect), which were larger and 
heavier than males (Tables S3 and S4). Neither wing morphology nor 
bilateral symmetry were affected by any experimental factor (Tables S5 
and S6). Flight musculature and ovary mass were reduced due to 
warming after accounting for variation due to body size (Fig. 2; 
Tables S7 and S8). 

3.2. Experiment 2: Effects of warming and GLY/GBF during adulthood 

Adult lifespan was reduced by warming, and GBF exposure in control 
temperature conditions (temperature × water treatment effect) also 
reduced lifespan (Table S9; Fig. 3a). Lifespan was further reduced by 
high feeding rate, small body size (initial body mass), and slow growth 
rate during early adulthood (Table S9). Feeding rate was reduced in 
males, small animals, and animals exposed to warming (Fig. 3b; 
Table S10). Feeding rate was also reduced due to GBF exposure (Fig. 3b), 
and this effect was greater in females (water treatment × sex effect; 
Table S10). After accounting for initial body mass, growth rate during 
early adulthood was reduced in males, in warming conditions, and by 
GBF exposure (Fig. 4a; Table S11). The efficiency by which ingested food 
was converted to body mass during early adulthood was reduced in 
males and by GBF exposure (Fig. 4b; Table S12). 

4. Discussion 

The broad-spectrum herbicide, GLY, is the most commonly applied 
pesticide in terrestrial ecosystems in the U.S. and, potentially, world
wide (reviewed in Benbrook, 2016). However, the combined effects of 
GLY/GBF exposure and warming on terrestrial animals are poorly un
derstood. Here, we examined how these potential multiple stressors 
shape a range of phenotypic traits—from growth and survival to 
reproduction and longevity—across life stages in a field cricket. Our 
results indicate that a thermal environment simulating future climate 
warming obligated several costs to fitness-related traits. For example, 
warming experienced during nymphal development reduced survival, 
adult body mass and size, and investment into flight capacity and 
reproduction (Figs. 1 and 2). Warming experienced by adults reduced 
lifespan and growth rate (Figs. 3 and 4). Alternatively, the effects of GBF 
exposure were more subtle, often context-dependent (e.g., effects were 
only detected in one sex or temperature regime), and were stronger 
during adult exposure relative to exposure during development 
(Figs. 1–4). The effects of GLY alone (i.e., in the absence of proprietary 
surfactants found in commercial formulations) were non-existent. In 
sum, our results indicate that GBF exposure and warming can each entail 
costs for an animal taxon (insects) that provide critical ecosystem ser
vices, including pollination and seed dispersal, nutrient and energy 
cycling, pest management, and decomposition (reviewed in Cardoso 
et al., 2020). 

4.1. More additive than non-additive costs of warming and GLY/GBF 
exposure 

Multiple stressors are increasingly common for animals (McRae 
et al., 2008; Nelson et al., 2009; Rohr and Palmer, 2013; Kaunisto et al., 

Fig. 2. Effects of water treatment (tap water [control], glyphosate [GLY], or 
GLY-based formulation [GBF]) and temperature experienced during develop
ment on investment into a.) flight musculature (scored from 0 [muscle absent] 
to 2 [muscle present and functional]), and b.) reproduction (dry ovary mass) in 
G. lineaticeps. For full results, see Tables S7 and S8. Values are displayed as 
mean ± s.e.m. 

Fig. 3. Effects of water treatment (tap water [control], glyphosate [GLY], or 
GLY-based formulation [GBF]) and temperature experienced during adulthood 
on a.) lifespan and b.) feeding rate in G. lineaticeps. For full results, see Tables S9 
and S10. Values are displayed as estimated marginal mean ± s.e.m. Because 
initial body mass was included as a covariate. 
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2016), and concurrent stressors may have an additive effect on a given 
animal trait where the stress due to two factors is simply the sum of 
either factor alone (Todgham and Stillman, 2013). However, multiple 
stressors may result in interactive, non-additive effects, such as syner
gistic or antagonistic effects (Folt et al., 1999; Todgham and Stillman, 
2013; Piggott et al., 2015). Our study manipulating GLY/GBF exposure 
and warming in G. lineaticeps revealed that these two factors did not 
generally constitute multiple stressors—warming was typically costly, 
but exposure to GLY and (at times) GBF were not costly. For example, 
water treatment did not affect survival, body size or mass, or investment 
into flight capacity or reproduction (Figs. 1–2). However, when costs 
from warming and GBF were detected, they were more likely to be ad
ditive costs. Specifically, rates of feeding and growth in adults were 
reduced by warming and GBF exposure (Figs. 3 and 4). In only one 
instance were costs non-additive or interactive—the negative effect of 
GBF exposure to adult lifespan did not occur in warming conditions 
because both stressors (alone or in combination) appeared to reduce 
lifespan (Fig. 3a), which suggests that ongoing climate change may 
obscure the costs of GBFs to non-target organisms. Our study’s greater 
support for additive costs of multiple stressors is in contrast with other 
multiple-stressor studies in Gryllus crickets, including G. lineaticeps 
(Padda et al., 2021; Padda and Stahlschmidt, 2022). Similar studies in 
other taxa provide a range of support for both additive and non-additive 
costs of multiple stressors (Løkke et al., 2013; Piggott et al., 2015; 
Gieswein et al., 2017). Thus, there may not be a universal “rule” for the 
manner in which concurrent environmental stressors affect animals. 

4.2. Costs of warming and GLY/GBF exposure vary across life stages 

Understanding the effects of complex environmental shifts on ani
mals requires consideration of the entire animal life cycle because life 
stages may vary in their sensitivities to stressors (reviewed in Kingsolver 
et al., 2011). Early life stages tend to be more sensitive to abiotic 
stressors, such as chemical pollutants and heat, putatively due to their 
smaller body sizes (Grosell et al., 2002; Verween et al., 2007; Klockmann 
et al., 2017; Pineda et al., 2012; Miller et al., 2013; Mohammed, 2013; 
but see Tangwancharoen and Burton, 2014; Shekh et al., 2019). How
ever, adult G. lineaticeps were more sensitive to GBF exposure relative to 
nymphs, and both nymphs and adults were strongly affected by warming 
(Figs. 1–4). Adult crickets contain significant body stores (Stahlschmidt 
and Chang, 2021), and one explanation for adults’ greater GBF sensi
tivity may be that surfactants contained in GBFs allow for increased 
accumulation of GBFs during adulthood because GBF co-formulants can 
rapidly penetrate and accumulate in cells (Vanlaeys et al., 2018). Our 
pilot data suggest that GLY/GBF-exposed adults consumed approxi
mately 0.5 μg of GLY each day, but future work should examine the 
amount of GLY consumed by nymphs—as well as whether life stages 
vary in their bioaccumulation of GLY—to clarify the stage-specific dy
namics of GLY/GBF exposure. Another explanation may lie in the 
interplay between GLY/GBFs and the microbiome. Glyphosate exposure 
alters gut microbiota in other animals, including in insects (Shehata 
et al., 2013; Motta et al., 2018; Tang et al., 2020). The richness of the 
insect gut microbiome is typically greater in earlier life stages (Yun 
et al., 2014; Juma et al., 2020), which may help nymphs buffer the 
negative effects of exposure to GLY/GBFs. However, future work is 
required to determine whether life stages differ in accumulation of 
GLY/GBF, and whether GLY/GBF exposure has stage-specific effects on 
the gut microbiome. 

4.3. Warming and GLY/GBF exposure have trait-specific effects 

All traits are not created equal—some traits contribute more directly 
to fitness than others—so investigating a suite of traits is key to under
standing the magnitude of potential stressors to animals. In our study, 
traits not directly connected to fitness (e.g., bilateral symmetry and wing 
morphology) were unaffected by warming and GLY/GBF exposure 
(Tables S5 and S6). Meanwhile, fitness-related traits were highly sensi
tive to temperature—on average, warming reduced survival by >30% 
and reproductive investment by >120% (Figs. 1a and 2b). High tem
peratures can destabilize proteins and membranes, lead to oxygen lim
itation, and increase energy expenditure and the production of stress- 
related biomolecules (e.g., heat shock proteins), and these physiolog
ical effects can contribute to reduced survival and reproductive invest
ment (reviewed in Angilletta, 2009). Other important traits were 
affected by both warming and GBF exposure in our study (e.g., devel
opmental duration, food intake, and adult growth rate). Together, these 
three traits determine how quickly an animal can disperse and repro
duce, and how many resources an animal has acquired for storage, 
reproductive investment, and self-maintenance. Therefore, the 
increasing prevalence of combined warming and GBF exposure is likely 
to strongly impact cricket populations. We encourage continued exam
ination into the effects of temperature and GLY/GBF on traits linked to 
fitness, such as lifetime egg production and offspring success (e.g., 
Stahlschmidt et al., 2020; Stahlschmidt and Vo, 2022). 

Several traits in G. lineaticeps responded predictably to warming and 
GBF exposure. For example, warming increased developmental rate (i. 
e., reduced developmental duration) at the expense of adult body size 
(Fig. 1b and c) in agreement with results in other animals, including 
other insects (reviewed in Angilletta, 2009; Régnière et al., 2012). 
Warming associated with global climate change reduces animal body 
size (Gardner et al., 2011), and smaller animals tend to exhibit 
decreased fitness (e.g., reduced investment into reproductive tissue or 
mating success: reviewed in Peters, 1983). In support, smaller crickets in 

Fig. 4. Effects of water treatment (tap water [control], glyphosate [GLY], or 
GLY-based formulation [GBF]) and temperature experienced during adulthood 
on a.) growth rate (body mass gained) and b.) the efficiency by which ingested 
food was converted into body mass during early adulthood in G. lineaticeps. For 
full results, see Tables S11 and S12. Values are displayed as estimated marginal 
mean ± s.e.m. for growth rate because initial body mass was included as a 
covariate and as mean ± s.e.m. for conversion efficiency. 
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our study exhibited reduced adult lifespan. Crickets that fed at a higher 
rate also exhibited reduced lifespan (Table S10), which appears to be a 
universal feature of animal biology (Fontana et al., 2010; Fontana and 
Partridge, 2015). Yet, warming and GBF exposure during adulthood 
reduced feeding but shortened (not prolonged) lifespan (Fig. 3). This 
discrepancy may be due aspects of experimental design. Work linking 
dietary restriction with longevity generally involves experimental 
manipulation of food availability (Fontana et al., 2010; Fontana and 
Partridge, 2015). However, food availability in our study was unlimited, 
meaning that reduced food intake was voluntary and potentially due to 
warming- or GBF exposure-induced stress. GBF exposure not only 
reduced food intake (similar to the effects of other herbicides: Ja et al., 
2007). It also reduced the efficiency by which ingested food was con
verted to body mass during a period of dramatic reproductive invest
ment (Fig. 4c), which suggests a metabolic cost of GBF exposure. Thus, 
understanding the fitness-related costs of multiple stressors requires 
careful consideration for the roles of resource (food) acquisition and 
allocation, particularly because ongoing climate change is expected to 
create food scarcity for insects due to range contractions of their food 
plants (Romo et al., 2014, 2015). 

4.4. Costs of GBF exposure are not due to GLY 

GBFs typically include surfactants as co-formulants or adjuvants, 
which facilitate the penetration of GLY into plant cells (Giesy et al., 
2000). Polyoxyethyleneamine (POEA) is a surfactant commonly found 
in GBFs, and POEA alone often mimics or exceeds the effects of GBFs on 
animals (Tsui and Chu, 2003; Howe et al., 2004; reviewed in Gill et al., 
2018). Therefore, costs of GBF exposure to animals are likely due to 
adjuvants, rather than GLY itself. In agreement, we found no effect of 
exposure to GLY alone on any measured trait (Figs. 1–4), but the effects 
of higher doses of GLY should be explored because GLY exposure tends 
to affect survival and the gut microbiome only at higher concentrations 
(e.g., >11 mg/L of H2O) in other insects (Motta and Moran, 2020). 
However, exposure to a common GBF in our study (i.e., Roundup®: 5 mg 
GLY/L of H2O + adjuvants) reduced development time, adult lifespan in 
control temperature conditions, food intake, adult growth rate, and the 
rate at which ingested food was converted to body mass (Figs. 1–4). 
Some of these effects were likely linked. For example, reduced growth 
rate was probably due to reduced food intake, which may be affected by 
water consumption. Other animals exhibit avoidance behaviors toward 
GLY/GBFs (Takahashi, 2007; Tierney et al., 2007; da Rosa et al., 2016; 
Leeb et al., 2020; but see Santos et al., 2012). Gryllus lineaticeps do not 
discriminate against GLY/GBF when making egg-laying decisions 
(Stahlschmidt and Vo, 2022), but their ability to avoid drinking water 
sources containing GLY/GBFs is unknown. Physiologically, surfactants 
interfere with the inner mitochondrial membrane and reduce the proton 
gradient required for cellular respiration (Bradberry et al., 2004), and 
oral exposure to POEA damages the gastrointestinal tract and lungs in 
mammals (Adam et al., 1997). In invertebrates, POEA exposure upre
gulates antioxidant defenses and can increase apoptosis (Contardo-Jara 
et al., 2009; Bednářová et al., 2020). However, it is unclear which spe
cific behavioral or physiological mechanism(s) underlie the suite of ef
fects in crickets that we observed. 

5. Conclusions 

Animals will be increasingly exposed to warming and GBFs (Ben
brook, 2016; Maggi et al., 2019, 2020; IPCC et al., 2021), and the 
multiple-stressor framework provides a useful construct to better un
derstand their effects on animals. Our results in a cricket indicate that 
warming tends to have larger effects than GBF exposure, and that the 
costs of these two stressors is more likely to be additive (Figs. 1–4). 
However, context is important, and we show that warming can reduce 
the harmful effects of GBF exposure on a fitness-related trait (i.e., adult 
lifespan: Fig. 3a). Stress biology can also vary due to sex (Kwan et al., 

2008; Gruntenko et al., 2016; Moisan, 2021; Vinterstare et al., 2021), 
and we found that females were more sensitive to warming and GBF 
exposure. Specifically, female body size was more influenced by 
warming during development, and GBF exposure during adulthood 
affected feeding more in females (Tables S4 and S10). Gryllus crickets 
exhibit sexual variation in body size and other morphological charac
teristics, physiology, and developmental sensitivity to food availability 
and immune challenge (Zera et al., 2007; Judge and Bonanno, 2008; 
Kelly et al., 2014; Tawes and Kelly, 2017; Kirschman et al., 2019), and 
our results add to this list because stress sensitivity may also be sexually 
dimorphic. Therefore, we encourage researchers to continue to leverage 
the multiple-stressor framework to clarify how costs vary across 
different life stages, traits, and sexes. Future work should also consider 
the dynamics of sequential stressors given the hormetic responses to 
pesticide- and temperature-related stress in insects (reviewed in Rix and 
Cutler, 2022). For example, GBF exposure during development may 
influence—perhaps even improve— adult heat tolerance. After all, a 
clear understanding of organismal responses to multiple stressors can 
inform the population-level effects of environmental stress (Sokolova 
et al., 2012). 
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